生物
基因表达
计算生物学
人口普查
基因
RNA剪接
核糖核酸
信使核糖核酸
选择性拼接
转录组
遗传学
细胞
单细胞分析
RNA序列
人口
医学
环境卫生
作者
Xiaojie Qiu,Andrew J. Hill,Jonathan S. Packer,Dejun Lin,Yi-An Ma,Cole Trapnell
出处
期刊:Nature Methods
[Springer Nature]
日期:2017-01-23
卷期号:14 (3): 309-315
被引量:1484
摘要
Single-cell gene expression studies promise to reveal rare cell types and cryptic states, but the high variability of single-cell RNA-seq measurements frustrates efforts to assay transcriptional differences between cells. We introduce the Census algorithm to convert relative RNA-seq expression levels into relative transcript counts without the need for experimental spike-in controls. Analyzing changes in relative transcript counts led to dramatic improvements in accuracy compared to normalized read counts and enabled new statistical tests for identifying developmentally regulated genes. Census counts can be analyzed with widely used regression techniques to reveal changes in cell-fate-dependent gene expression, splicing patterns and allelic imbalances. We reanalyzed single-cell data from several developmental and disease studies, and demonstrate that Census enabled robust analysis at multiple layers of gene regulation. Census is freely available through our updated single-cell analysis toolkit, Monocle 2.
科研通智能强力驱动
Strongly Powered by AbleSci AI