纳米孔
离子
超级电容器
纳米孔
材料科学
散射
碳纤维
蒙特卡罗方法
化学物理
电解质
溶剂化
纳米技术
化学工程
物理
化学
物理化学
光学
电化学
电极
复合材料
复合数
有机化学
统计
数学
工程类
作者
Christian Prehal,Christian Koczwara,Nicolas Jäckel,Anna Schreiber,Max Burian,Heinz Amenitsch,Markus A. Hartmann,Volker Presser,Oskar Paris
出处
期刊:Nature Energy
[Springer Nature]
日期:2017-01-30
卷期号:2 (3)
被引量:250
标识
DOI:10.1038/nenergy.2016.215
摘要
A detailed understanding of confinement and desolvation of ions in electrically charged carbon nanopores is the key to enable advanced electrochemical energy storage and water treatment technologies. Here, we present the synergistic combination of experimental data from in situ small-angle X-ray scattering with Monte Carlo simulations of length-scale-dependent ion arrangement. In our approach, the simulations are based on the actual carbon nanopore structure and the global ion concentrations in the electrodes, both obtained from experiments. A combination of measured and simulated scattering data provides compelling evidence of partial desolvation of Cs+ and Cl− ions in water even in mixed micro–mesoporous carbons with average pore size well above 1 nm. A tight attachment of the aqueous solvation shell effectively prevents complete desolvation in carbons with subnanometre average pore size. The tendency of counter-ions to change their local environment towards high confinement with increasing voltage determines conclusively the performance of supercapacitor electrodes. The complexity of electrochemical storage systems makes it difficult to study ion dynamics between electrodes and electrolytes. Here the authors present an approach combining in situ X-ray scattering and Monte Carlo simulation for a comprehensive understanding of ion confinement and desolvation in nanoporous carbon supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI