亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering

纳米孔 离子 超级电容器 纳米孔 材料科学 散射 碳纤维 蒙特卡罗方法 化学物理 电解质 溶剂化 纳米技术 化学工程 物理 化学 物理化学 光学 电化学 电极 复合材料 复合数 有机化学 工程类 统计 数学
作者
Christian Prehal,Christian Koczwara,Nicolas Jäckel,Anna Schreiber,Max Burian,Heinz Amenitsch,Markus A. Hartmann,Volker Presser,Oskar Paris
出处
期刊:Nature Energy [Springer Nature]
卷期号:2 (3) 被引量:285
标识
DOI:10.1038/nenergy.2016.215
摘要

A detailed understanding of confinement and desolvation of ions in electrically charged carbon nanopores is the key to enable advanced electrochemical energy storage and water treatment technologies. Here, we present the synergistic combination of experimental data from in situ small-angle X-ray scattering with Monte Carlo simulations of length-scale-dependent ion arrangement. In our approach, the simulations are based on the actual carbon nanopore structure and the global ion concentrations in the electrodes, both obtained from experiments. A combination of measured and simulated scattering data provides compelling evidence of partial desolvation of Cs+ and Cl− ions in water even in mixed micro–mesoporous carbons with average pore size well above 1 nm. A tight attachment of the aqueous solvation shell effectively prevents complete desolvation in carbons with subnanometre average pore size. The tendency of counter-ions to change their local environment towards high confinement with increasing voltage determines conclusively the performance of supercapacitor electrodes. The complexity of electrochemical storage systems makes it difficult to study ion dynamics between electrodes and electrolytes. Here the authors present an approach combining in situ X-ray scattering and Monte Carlo simulation for a comprehensive understanding of ion confinement and desolvation in nanoporous carbon supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美语兰完成签到 ,获得积分10
8秒前
美好灵寒完成签到 ,获得积分10
27秒前
小二郎应助科研通管家采纳,获得10
35秒前
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
猫猫豆包完成签到,获得积分10
39秒前
Orange应助儒雅的冥王星采纳,获得100
1分钟前
1分钟前
笑傲完成签到,获得积分10
1分钟前
情怀应助猫猫豆包采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
henrychen完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
6分钟前
隐形曼青应助科研小贩采纳,获得10
6分钟前
ranj完成签到,获得积分10
6分钟前
上官若男应助金水相生采纳,获得10
6分钟前
6分钟前
调皮千兰发布了新的文献求助10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
sujiaoziemo完成签到,获得积分10
7分钟前
zzw18512467916完成签到,获得积分10
7分钟前
7分钟前
完美世界应助调皮千兰采纳,获得10
7分钟前
乐乐应助赵振辉采纳,获得10
7分钟前
yang发布了新的文献求助10
7分钟前
bdsb完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
BowieHuang应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4816219
关于积分的说明 15080820
捐赠科研通 4816310
什么是DOI,文献DOI怎么找? 2577281
邀请新用户注册赠送积分活动 1532293
关于科研通互助平台的介绍 1490899