纳米晶
卤化物
材料科学
分散性
吸收(声学)
吸收光谱法
带隙
八面体
光致发光
胶体
分析化学(期刊)
纳米技术
结晶学
无机化学
物理化学
化学
晶体结构
光电子学
光学
物理
复合材料
高分子化学
色谱法
作者
Quinten A. Akkerman,Sungwook Park,Eros Radicchi,Francesca Nunzi,Edoardo Mosconi,Filippo De Angelis,Rosaria Brescia,Prachi Rastogi,Mirko Prato,Liberato Manna
出处
期刊:Nano Letters
[American Chemical Society]
日期:2017-02-14
卷期号:17 (3): 1924-1930
被引量:553
标识
DOI:10.1021/acs.nanolett.6b05262
摘要
We have developed a colloidal synthesis of nearly monodisperse nanocrystals of pure Cs4PbX6 (X = Cl, Br, I) and their mixed halide compositions with sizes ranging from 9 to 37 nm. The optical absorption spectra of these nanocrystals display a sharp, high energy peak due to transitions between states localized in individual PbX64- octahedra. These spectral features are insensitive to the size of the particles and in agreement with the features of the corresponding bulk materials. Samples with mixed halide composition exhibit absorption bands that are intermediate in spectral position between those of the pure halide compounds. Furthermore, the absorption bands of intermediate compositions broaden due to the different possible combinations of halide coordination around the Pb2+ ions. Both observations are supportive of the fact that the [PbX6]4- octahedra are electronically decoupled in these systems. Because of the large band gap of Cs4PbX6 (>3.2 eV), no excitonic emission in the visible range was observed. The Cs4PbBr6 nanocrystals can be converted into green fluorescent CsPbBr3 nanocrystals by their reaction with an excess of PbBr2 with preservation of size and size distributions. The insertion of PbX2 into Cs4PbX6 provides a means of accessing CsPbX3 nanocrystals in a wide variety of sizes, shapes, and compositions, an important aspect for the development of precisely tuned perovskite nanocrystal inks.
科研通智能强力驱动
Strongly Powered by AbleSci AI