Liver Segmentation on CT and MR Using Laplacian Mesh Optimization

分割 人工智能 计算机科学 计算机视觉 图像分割 过程(计算) 拉普拉斯算子 模式识别(心理学) 数学 操作系统 数学分析
作者
Gabriel Chartrand,Thierry Cresson,Ramnada Chav,Akshat Gotra,An Tang,Jacques A. de Guise
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:64 (9): 2110-2121 被引量:64
标识
DOI:10.1109/tbme.2016.2631139
摘要

Objective: The purpose of this paper is to describe a semiautomated segmentation method for the liver and evaluate its performance on CT-scan and MR images. Methods: First, an approximate 3-D model of the liver is initialized from a few user-generated contours to globally outline the liver shape. The model is then automatically deformed by a Laplacian mesh optimization scheme until it precisely delineates the patient's liver. A correction tool was implemented to allow the user to improve the segmentation until satisfaction. Results: The proposed method was tested against 30 CT-scans from the SLIVER07 challenge repository and 20 MR studies from the Montreal University Hospital Center, covering a wide spectrum of liver morphologies and pathologies. The average volumetric overlap error was 5.1% for CT and 7.6% for MRI and the average segmentation time was 6 min. Conclusion: The obtained results show that the proposed method is efficient, reliable, and could effectively be used routinely in the clinical setting. Significance: The proposed approach can alleviate the cumbersome and tedious process of slice-wise segmentation required for precise hepatic volumetry, virtual surgery, and treatment planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助月不笑采纳,获得10
刚刚
suohaiyun发布了新的文献求助10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
小宋发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得30
1秒前
吃人陈发布了新的文献求助10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
liuchengrui应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
kagaminelen完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
mengtingmei应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
xdd完成签到,获得积分10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
卤味狮子头完成签到,获得积分10
2秒前
田様应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
zik应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791