已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification and estimation of treatment and interference effects in observational studies on networks

协变量 观察研究 估计员 因果推理 倾向得分匹配 平均处理效果 计量经济学 推论 鉴定(生物学) 人口 统计 干扰(通信) 计算机科学 样品(材料) 数学 人工智能 医学 电信 频道(广播) 植物 化学 环境卫生 色谱法 生物
作者
Laura Forastiere,Edoardo M. Airoldi,Fabrizia Mealli
出处
期刊:Cornell University - arXiv 被引量:12
摘要

Causal inference on a population of units connected through a network often presents technical challenges, including how to account for interference. In the presence of local interference, for instance, potential outcomes of a unit depend on its treatment as well as on the treatments of other local units, such as its neighbors according to the network. In observational studies, a further complication is that the typical unconfoundedness assumption must be extended - say, to include the treatment of neighbors, and indi- vidual and neighborhood covariates - to guarantee identification and valid inference. Here, we propose new estimands that define treatment and interference effects. We then derive analytical expressions for the bias of a naive estimator that wrongly assumes away interference. The bias depends on the level of interference but also on the degree of association between individual and neighborhood treatments. We propose an extended unconfoundedness assumption that accounts for interference, and we develop new covariate-adjustment methods that lead to valid estimates of treatment and interference effects in observational studies on networks. Estimation is based on a generalized propensity score that balances individual and neighborhood covariates across units under different levels of individual treatment and of exposure to neighbors' treatment. We carry out simulations, calibrated using friendship networks and covariates in a nationally representative longitudinal study of adolescents in grades 7-12, in the United States, to explore finite-sample performance in different realistic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助舒心飞珍采纳,获得10
刚刚
Hello应助努力建模采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
科研通AI6应助伊果爸爸采纳,获得10
5秒前
淡淡如曼完成签到,获得积分10
5秒前
xtz发布了新的文献求助10
7秒前
无尽完成签到,获得积分20
8秒前
8秒前
8秒前
RCRCRC1995完成签到 ,获得积分10
9秒前
852应助清修采纳,获得10
9秒前
hh完成签到,获得积分10
9秒前
9秒前
AU发布了新的文献求助10
10秒前
淡淡如曼发布了新的文献求助10
10秒前
Easlie完成签到,获得积分10
10秒前
李健应助susu采纳,获得10
10秒前
充电宝应助dd采纳,获得10
11秒前
11秒前
伶俐的火完成签到 ,获得积分10
13秒前
13秒前
13秒前
Erinnnnjin发布了新的文献求助10
13秒前
mager完成签到 ,获得积分10
13秒前
徐晨曦发布了新的文献求助10
14秒前
努力建模发布了新的文献求助10
14秒前
15秒前
xxfsx应助乐观的若翠采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
19秒前
中小南应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
aldehyde应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481948
求助须知:如何正确求助?哪些是违规求助? 4582876
关于积分的说明 14387479
捐赠科研通 4511752
什么是DOI,文献DOI怎么找? 2472560
邀请新用户注册赠送积分活动 1458791
关于科研通互助平台的介绍 1432218