亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification and estimation of treatment and interference effects in observational studies on networks

协变量 观察研究 估计员 因果推理 倾向得分匹配 平均处理效果 计量经济学 推论 鉴定(生物学) 人口 统计 干扰(通信) 计算机科学 样品(材料) 数学 人工智能 医学 电信 频道(广播) 植物 化学 环境卫生 色谱法 生物
作者
Laura Forastiere,Edoardo M. Airoldi,Fabrizia Mealli
出处
期刊:Cornell University - arXiv 被引量:12
摘要

Causal inference on a population of units connected through a network often presents technical challenges, including how to account for interference. In the presence of local interference, for instance, potential outcomes of a unit depend on its treatment as well as on the treatments of other local units, such as its neighbors according to the network. In observational studies, a further complication is that the typical unconfoundedness assumption must be extended - say, to include the treatment of neighbors, and indi- vidual and neighborhood covariates - to guarantee identification and valid inference. Here, we propose new estimands that define treatment and interference effects. We then derive analytical expressions for the bias of a naive estimator that wrongly assumes away interference. The bias depends on the level of interference but also on the degree of association between individual and neighborhood treatments. We propose an extended unconfoundedness assumption that accounts for interference, and we develop new covariate-adjustment methods that lead to valid estimates of treatment and interference effects in observational studies on networks. Estimation is based on a generalized propensity score that balances individual and neighborhood covariates across units under different levels of individual treatment and of exposure to neighbors' treatment. We carry out simulations, calibrated using friendship networks and covariates in a nationally representative longitudinal study of adolescents in grades 7-12, in the United States, to explore finite-sample performance in different realistic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawn完成签到,获得积分20
2秒前
dawn发布了新的文献求助10
5秒前
27秒前
汉堡包应助Fluoxtine采纳,获得10
34秒前
xixi发布了新的文献求助10
34秒前
丘比特应助科研通管家采纳,获得10
35秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
汉堡包应助科研通管家采纳,获得10
35秒前
慕青应助科研通管家采纳,获得10
35秒前
kuoping完成签到,获得积分0
38秒前
43秒前
机灵自中完成签到,获得积分10
49秒前
Stellarshi517发布了新的文献求助20
49秒前
51秒前
科研通AI6.1应助xixi采纳,获得10
52秒前
lyw发布了新的文献求助10
55秒前
田様应助Stellarshi517采纳,获得20
1分钟前
1分钟前
kuiuLinvk发布了新的文献求助10
1分钟前
1分钟前
kuiuLinvk完成签到,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
采薇发布了新的文献求助10
1分钟前
2分钟前
科研通AI6.1应助小博采纳,获得10
2分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
彭于晏应助凛玖niro采纳,获得10
2分钟前
Stellarshi517发布了新的文献求助20
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
lanxinyue应助科研通管家采纳,获得10
2分钟前
2分钟前
lzmcsp发布了新的文献求助10
2分钟前
2分钟前
斯文败类应助Marshall采纳,获得10
2分钟前
凛玖niro发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788568
求助须知:如何正确求助?哪些是违规求助? 5709401
关于积分的说明 15473692
捐赠科研通 4916583
什么是DOI,文献DOI怎么找? 2646482
邀请新用户注册赠送积分活动 1594146
关于科研通互助平台的介绍 1548577