Identification and estimation of treatment and interference effects in observational studies on networks

协变量 观察研究 估计员 因果推理 倾向得分匹配 平均处理效果 计量经济学 推论 鉴定(生物学) 人口 统计 干扰(通信) 计算机科学 样品(材料) 数学 人工智能 医学 电信 生物 环境卫生 频道(广播) 植物 色谱法 化学
作者
Laura Forastiere,Edoardo M. Airoldi,Fabrizia Mealli
出处
期刊:Cornell University - arXiv 被引量:12
摘要

Causal inference on a population of units connected through a network often presents technical challenges, including how to account for interference. In the presence of local interference, for instance, potential outcomes of a unit depend on its treatment as well as on the treatments of other local units, such as its neighbors according to the network. In observational studies, a further complication is that the typical unconfoundedness assumption must be extended - say, to include the treatment of neighbors, and indi- vidual and neighborhood covariates - to guarantee identification and valid inference. Here, we propose new estimands that define treatment and interference effects. We then derive analytical expressions for the bias of a naive estimator that wrongly assumes away interference. The bias depends on the level of interference but also on the degree of association between individual and neighborhood treatments. We propose an extended unconfoundedness assumption that accounts for interference, and we develop new covariate-adjustment methods that lead to valid estimates of treatment and interference effects in observational studies on networks. Estimation is based on a generalized propensity score that balances individual and neighborhood covariates across units under different levels of individual treatment and of exposure to neighbors' treatment. We carry out simulations, calibrated using friendship networks and covariates in a nationally representative longitudinal study of adolescents in grades 7-12, in the United States, to explore finite-sample performance in different realistic settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai_完成签到,获得积分10
1秒前
snowdrift完成签到,获得积分10
1秒前
valiant完成签到,获得积分10
1秒前
啦啦啦啦完成签到,获得积分10
1秒前
山山完成签到 ,获得积分10
2秒前
jodie0105完成签到,获得积分10
3秒前
星辰大海应助Silver采纳,获得10
3秒前
小二郎应助c445507405采纳,获得10
3秒前
老迟到的雪糕完成签到,获得积分10
4秒前
怕黑书翠完成签到,获得积分10
4秒前
4秒前
4秒前
英俊芷完成签到 ,获得积分10
4秒前
羽言完成签到,获得积分10
4秒前
盆栽完成签到,获得积分10
4秒前
xeauyca35完成签到,获得积分10
5秒前
mg完成签到,获得积分10
5秒前
pluto应助犹豫的觅云采纳,获得10
5秒前
Yen完成签到,获得积分10
5秒前
ye完成签到,获得积分10
5秒前
5秒前
方文浩关注了科研通微信公众号
6秒前
沉默的宛筠完成签到,获得积分10
6秒前
右右完成签到,获得积分10
7秒前
feishxixi完成签到,获得积分10
7秒前
YinHy完成签到,获得积分10
8秒前
小刘完成签到,获得积分10
8秒前
九点半上课了完成签到,获得积分10
8秒前
英俊的铭应助开心的小熊采纳,获得20
8秒前
9秒前
笑点低的紫完成签到,获得积分10
10秒前
晚风完成签到,获得积分10
11秒前
leishenwang完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Sheryl完成签到,获得积分10
12秒前
缓慢晟睿完成签到,获得积分10
12秒前
细心沛山完成签到,获得积分10
12秒前
SYY完成签到,获得积分10
12秒前
Creamsoda完成签到,获得积分10
13秒前
深海鳕鱼完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582