Identification and estimation of treatment and interference effects in observational studies on networks

协变量 观察研究 估计员 因果推理 倾向得分匹配 平均处理效果 计量经济学 推论 鉴定(生物学) 人口 统计 干扰(通信) 计算机科学 样品(材料) 数学 人工智能 医学 电信 生物 环境卫生 频道(广播) 植物 色谱法 化学
作者
Laura Forastiere,Edoardo M. Airoldi,Fabrizia Mealli
出处
期刊:Cornell University - arXiv 被引量:12
摘要

Causal inference on a population of units connected through a network often presents technical challenges, including how to account for interference. In the presence of local interference, for instance, potential outcomes of a unit depend on its treatment as well as on the treatments of other local units, such as its neighbors according to the network. In observational studies, a further complication is that the typical unconfoundedness assumption must be extended - say, to include the treatment of neighbors, and indi- vidual and neighborhood covariates - to guarantee identification and valid inference. Here, we propose new estimands that define treatment and interference effects. We then derive analytical expressions for the bias of a naive estimator that wrongly assumes away interference. The bias depends on the level of interference but also on the degree of association between individual and neighborhood treatments. We propose an extended unconfoundedness assumption that accounts for interference, and we develop new covariate-adjustment methods that lead to valid estimates of treatment and interference effects in observational studies on networks. Estimation is based on a generalized propensity score that balances individual and neighborhood covariates across units under different levels of individual treatment and of exposure to neighbors' treatment. We carry out simulations, calibrated using friendship networks and covariates in a nationally representative longitudinal study of adolescents in grades 7-12, in the United States, to explore finite-sample performance in different realistic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
科研人完成签到 ,获得积分10
1秒前
只道寻常完成签到,获得积分10
2秒前
2秒前
技术的不能发表完成签到 ,获得积分10
2秒前
yx阿聪完成签到,获得积分10
3秒前
3秒前
Owen应助颿曦采纳,获得10
3秒前
感性的夜玉完成签到,获得积分10
4秒前
称心的语梦完成签到,获得积分10
4秒前
蛰伏的小宇宙完成签到,获得积分10
4秒前
4秒前
lpjianai168完成签到,获得积分10
4秒前
xyp_zjut发布了新的文献求助10
5秒前
张张完成签到,获得积分10
5秒前
单纯的爆米花完成签到,获得积分10
5秒前
123完成签到,获得积分10
6秒前
大意的馒头完成签到,获得积分10
6秒前
KJ完成签到,获得积分10
6秒前
嘻嘻完成签到 ,获得积分10
7秒前
刚果王子完成签到,获得积分10
7秒前
xxx完成签到,获得积分10
7秒前
luoluo完成签到,获得积分10
8秒前
行李早已收拾好丶完成签到,获得积分10
8秒前
One完成签到,获得积分10
8秒前
子车谷波完成签到,获得积分10
9秒前
H_H完成签到,获得积分10
9秒前
炙热盼兰发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
肉肉发布了新的文献求助10
9秒前
烟花应助tianliangjie9712采纳,获得10
10秒前
ldy完成签到,获得积分10
10秒前
逸风望完成签到,获得积分10
10秒前
小瑄完成签到,获得积分10
10秒前
lullaby完成签到,获得积分10
10秒前
阿狄丽娜完成签到,获得积分10
11秒前
和谐的醉山完成签到,获得积分0
11秒前
多情的葵阴完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067058
求助须知:如何正确求助?哪些是违规求助? 4288959
关于积分的说明 13361075
捐赠科研通 4108412
什么是DOI,文献DOI怎么找? 2249688
邀请新用户注册赠送积分活动 1255122
关于科研通互助平台的介绍 1187612