Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics

自愈水凝胶 韧性 复合材料 刚度 无定形磷酸钙 断裂韧性 材料科学 生物医学工程 高分子化学 医学 冶金
作者
Nicolas Rauner,Monika Meuris,Mirjana Zoric,Joerg C. Tiller
出处
期刊:Nature [Springer Nature]
卷期号:543 (7645): 407-410 被引量:217
标识
DOI:10.1038/nature21392
摘要

The cartilage and skin of animals, which are made up of more than fifty per cent water, are rather stiff (having elastic moduli of up to 100 megapascals) as well as tough and hard to break (with fracture energies of up to 9,000 joules per square metre). Such features make these biological materials mechanically superior to existing synthetic hydrogels. Lately, progress has been made in synthesizing tough hydrogels, with double-network hydrogels achieving the toughness of skin and inorganic-organic composites showing even better performance. However, these materials owe their toughness to high stretchability; in terms of stiffness, synthetic hydrogels cannot compete with their natural counterparts, with the best examples having elastic moduli of just 10 megapascals or less. Previously, we described the enzyme-induced precipitation and crystallization of hydrogels containing calcium carbonate, but the resulting materials were brittle. Here we report the enzyme-induced formation of amorphous calcium phosphate nanostructures that are homogenously distributed within polymer hydrogels. Our best materials have fracture energies of 1,300 joules per square metre even in their fully water-swollen state-a value superior to that of most known water-swollen synthetic materials. We are also able to modulate their stiffness up to 440 megapascals, well beyond that of cartilage and skin. Furthermore, the highly filled composite materials can be designed to be optically transparent and to retain most of their stretchability even when notched. We show that percolation drives the mechanical properties, particularly the high stiffness, of our uniformly mineralized hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gdSA完成签到,获得积分10
刚刚
王小姚发布了新的文献求助30
刚刚
wasttt发布了新的文献求助10
1秒前
迷路的大白菜完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
老鼠爱吃fish完成签到,获得积分10
4秒前
5秒前
peekaboo完成签到,获得积分10
5秒前
小马甲应助科研小废材采纳,获得10
5秒前
一念来回完成签到,获得积分10
6秒前
levi完成签到,获得积分10
6秒前
小马甲应助dongli6536采纳,获得10
7秒前
HHHAN完成签到,获得积分10
8秒前
982289172发布了新的文献求助10
8秒前
SLS完成签到,获得积分10
9秒前
3137874883发布了新的文献求助10
10秒前
落后醉易发布了新的文献求助10
10秒前
开心的中心完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
wwxxxkkk发布了新的文献求助10
13秒前
快乐的伟诚完成签到,获得积分10
13秒前
传奇3应助佳妹儿采纳,获得10
13秒前
Yuan88发布了新的文献求助10
13秒前
zzzzy完成签到,获得积分10
14秒前
道阻且长发布了新的文献求助10
15秒前
16秒前
16秒前
zho发布了新的文献求助10
16秒前
gdSA发布了新的文献求助100
17秒前
红丽阿妹发布了新的文献求助10
17秒前
17秒前
哈哈哈完成签到,获得积分10
18秒前
kjh完成签到,获得积分10
18秒前
溜溜发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522867
求助须知:如何正确求助?哪些是违规求助? 3103814
关于积分的说明 9267680
捐赠科研通 2800541
什么是DOI,文献DOI怎么找? 1536978
邀请新用户注册赠送积分活动 715322
科研通“疑难数据库(出版商)”最低求助积分说明 708729