Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue

材料科学 晶界 打滑(空气动力学) 方向错误 晶界强化 可塑性 冶金 停留时间 复合材料 机械 热力学 微观结构 物理 临床心理学 医学
作者
Zebang Zheng,Daniel S. Balint,Fionn P.E. Dunne
出处
期刊:Acta Materialia [Elsevier]
卷期号:127: 43-53 被引量:97
标识
DOI:10.1016/j.actamat.2017.01.021
摘要

This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Owen应助叶子采纳,获得10
1秒前
白白白发布了新的文献求助10
1秒前
Titter完成签到,获得积分10
2秒前
2861542517发布了新的文献求助10
2秒前
咕咕噜噜完成签到,获得积分10
2秒前
风趣的烤鸡完成签到,获得积分10
2秒前
Singularity应助boan采纳,获得10
3秒前
zyx发布了新的文献求助10
5秒前
Fh完成签到,获得积分10
5秒前
5秒前
田様应助轻松小蜜蜂采纳,获得10
5秒前
6秒前
威武外套发布了新的文献求助10
6秒前
6秒前
7秒前
十七应助负责的方盒采纳,获得10
7秒前
pluto应助负责的方盒采纳,获得10
7秒前
pluto应助负责的方盒采纳,获得10
7秒前
pluto应助负责的方盒采纳,获得10
7秒前
十七应助负责的方盒采纳,获得10
7秒前
wanci应助负责的方盒采纳,获得10
7秒前
所所应助负责的方盒采纳,获得10
7秒前
JamesPei应助负责的方盒采纳,获得10
7秒前
7秒前
迷路的小牛马完成签到,获得积分10
8秒前
8秒前
王鹏发布了新的文献求助10
9秒前
852应助风趣的烤鸡采纳,获得10
9秒前
传奇3应助吹梦成真采纳,获得10
11秒前
宣宣宣0733发布了新的文献求助10
11秒前
huihui完成签到,获得积分10
11秒前
不怕物理发布了新的文献求助10
12秒前
12秒前
12秒前
暴躁四叔应助阳光以筠采纳,获得30
12秒前
echo发布了新的文献求助10
13秒前
13秒前
xyz发布了新的文献求助10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880