亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of probabilistic and deterministic fiber tracking of cranial nerves

概率逻辑 噪音(视频) 人工智能 跟踪(教育) 可视化 模式识别(心理学) 部分各向异性 医学 计算机科学 磁共振弥散成像 计算机视觉 磁共振成像 图像(数学) 放射科 心理学 教育学
作者
Amir Zolal,Stephan B. Sobottka,Dino Podlesek,Jennifer Linn,Bernhard Rieger,Tareq A. Juratli,Gabriele Schackert,Hagen H. Kitzler
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:127 (3): 613-621 被引量:37
标识
DOI:10.3171/2016.8.jns16363
摘要

OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false-positive error of the last obtained depiction was also significantly lower in probabilistic than in deterministic tracking (p < 0.001). The HCP data yielded significantly better results in terms of the Dice coefficient in probabilistic tracking (p < 0.001, Mann-Whitney U-test) and in deterministic tracking (p = 0.02). The false-positive errors were smaller in HCP data in deterministic tracking (p < 0.001) and showed a strong trend toward significance in probabilistic tracking (p = 0.06). In the clinical cases, the probabilistic method visualized 7 of 10 attempted CNs accurately, compared with 3 correct depictions with deterministic tracking. CONCLUSIONS High angular resolution DTI scans are preferable for the DTI-based depiction of the cranial nerves. Probabilistic tracking with a gradual PICo threshold increase is more effective for this task than the previously described deterministic tracking with a gradual FA threshold increase and might represent a method that is useful for depicting cranial nerves with DTI since it eliminates the erroneous fibers without manual intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助hoojw采纳,获得10
刚刚
Zhao完成签到 ,获得积分10
1秒前
熊猫完成签到 ,获得积分10
2秒前
lqhccww发布了新的文献求助10
13秒前
研友_8yN60L完成签到,获得积分10
16秒前
ZB完成签到,获得积分10
20秒前
直率无声完成签到,获得积分10
22秒前
开朗满天完成签到,获得积分10
27秒前
深情安青应助lqhccww采纳,获得10
27秒前
牛八先生完成签到,获得积分10
30秒前
lu完成签到,获得积分10
34秒前
侧耳发布了新的文献求助10
36秒前
37秒前
激动的晓筠完成签到 ,获得积分10
37秒前
hh完成签到,获得积分10
38秒前
外向小猫咪完成签到,获得积分10
41秒前
静待花开发布了新的文献求助10
42秒前
文艺的枫叶完成签到 ,获得积分10
50秒前
meow完成签到 ,获得积分10
52秒前
Jerry完成签到 ,获得积分10
54秒前
打打应助121231233采纳,获得10
55秒前
OrangeWang完成签到,获得积分10
57秒前
OrangeWang发布了新的文献求助10
59秒前
orixero应助我去吃饭采纳,获得10
1分钟前
1分钟前
小尾巴完成签到 ,获得积分10
1分钟前
1分钟前
大个应助Nature_Science采纳,获得10
1分钟前
zero完成签到 ,获得积分10
1分钟前
gty完成签到,获得积分10
1分钟前
bob完成签到 ,获得积分10
1分钟前
121231233发布了新的文献求助10
1分钟前
友好白凡发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
英俊的铭应助gty采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866566
捐赠科研通 4706287
什么是DOI,文献DOI怎么找? 2542732
邀请新用户注册赠送积分活动 1508144
关于科研通互助平台的介绍 1472276