Comparison of probabilistic and deterministic fiber tracking of cranial nerves

概率逻辑 噪音(视频) 人工智能 跟踪(教育) 可视化 模式识别(心理学) 部分各向异性 医学 计算机科学 磁共振弥散成像 计算机视觉 磁共振成像 图像(数学) 放射科 心理学 教育学
作者
Amir Zolal,Stephan B. Sobottka,Dino Podlesek,Jennifer Linn,Bernhard Rieger,Tareq A. Juratli,Gabriele Schackert,Hagen H. Kitzler
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:127 (3): 613-621 被引量:37
标识
DOI:10.3171/2016.8.jns16363
摘要

OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false-positive error of the last obtained depiction was also significantly lower in probabilistic than in deterministic tracking (p < 0.001). The HCP data yielded significantly better results in terms of the Dice coefficient in probabilistic tracking (p < 0.001, Mann-Whitney U-test) and in deterministic tracking (p = 0.02). The false-positive errors were smaller in HCP data in deterministic tracking (p < 0.001) and showed a strong trend toward significance in probabilistic tracking (p = 0.06). In the clinical cases, the probabilistic method visualized 7 of 10 attempted CNs accurately, compared with 3 correct depictions with deterministic tracking. CONCLUSIONS High angular resolution DTI scans are preferable for the DTI-based depiction of the cranial nerves. Probabilistic tracking with a gradual PICo threshold increase is more effective for this task than the previously described deterministic tracking with a gradual FA threshold increase and might represent a method that is useful for depicting cranial nerves with DTI since it eliminates the erroneous fibers without manual intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
刚刚
Dddd发布了新的文献求助10
1秒前
深情安青应助咕咕嘎嘎采纳,获得10
1秒前
柚子应助seven采纳,获得20
1秒前
wanci应助小张同学采纳,获得10
1秒前
2秒前
2秒前
文森特的向日葵完成签到,获得积分10
2秒前
4秒前
CipherSage应助Smf采纳,获得10
5秒前
文闵发布了新的文献求助20
5秒前
万能图书馆应助Arrow采纳,获得10
5秒前
熹林向日葵完成签到,获得积分10
5秒前
小二郎应助顾月采纳,获得10
5秒前
科研通AI6应助泠泠月上采纳,获得10
6秒前
tguczf完成签到,获得积分10
7秒前
小鱼儿完成签到 ,获得积分10
7秒前
华仔应助成就忆秋采纳,获得30
9秒前
zzzdx发布了新的文献求助10
9秒前
科研通AI6应助鳗鱼道天采纳,获得10
9秒前
9秒前
Nicole完成签到,获得积分10
10秒前
白衣轻叹发布了新的文献求助10
10秒前
10秒前
田様应助许墨的小蝴蝶采纳,获得10
11秒前
王书兰发布了新的文献求助10
11秒前
Anthocyanidin完成签到,获得积分10
12秒前
米龙完成签到,获得积分10
12秒前
天天快乐应助ENIX采纳,获得10
12秒前
大门神完成签到,获得积分10
13秒前
宁不言完成签到,获得积分10
14秒前
我是老大应助GIANTim采纳,获得20
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
18秒前
18秒前
砺行应助简简单单采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354650
求助须知:如何正确求助?哪些是违规求助? 4486721
关于积分的说明 13967578
捐赠科研通 4387283
什么是DOI,文献DOI怎么找? 2410289
邀请新用户注册赠送积分活动 1402711
关于科研通互助平台的介绍 1376487