任务(项目管理)
趋同(经济学)
度量(数据仓库)
反向传播
多层感知器
感知器
领域(数学分析)
人工智能
计算机科学
人工神经网络
算法
模式识别(心理学)
数学
数据挖掘
工程类
经济
数学分析
系统工程
经济增长
作者
David E. Rumelhart,Geoffrey E. Hinton,Ronald J. Williams
出处
期刊:Nature
[Nature Portfolio]
日期:1986-10-01
卷期号:323 (6088): 533-536
被引量:26286
摘要
We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.
科研通智能强力驱动
Strongly Powered by AbleSci AI