数学
伯格曼核
多段对数
交错
纯数学
领域(数学分析)
核(代数)
感恩
福克空间
功能(生物学)
主题(文档)
域代数上的
数学分析
计算机科学
黎曼zeta函数
物理
心理学
人工智能
社会心理学
量子力学
图书馆学
素数zeta函数
算术zeta函数
进化生物学
生物
标识
DOI:10.1080/17476933.2011.620098
摘要
Abstract We consider the Fock–Bargmann–Hartogs domain D n,m which is defined by the inequality where (z, ζ) ∈ ℂ n × ℂ m and μ > 0. We give an explicit formula for the Bergman kernel of the domain in terms of the polylogarithm functions. Moreover, using the interlacing property, we describe how the existence of zeros of the Bergman kernel depends on the integers m and n. Keywords: Bergman kernelweighted Bergman kernelFock–Bargmann spacepolylogarithm functionLu Qi-Keng problemForelli–Rudin constructionAMS Subject classifications: 32A2532A07 Acknowledgements The author would like to express his sincere gratitude to Professors Hideyuki Ishi and Hiroyuki Ochiai and Dr Daisuke Shiomi for their helpful advice and discussions. The author also acknowledges the encouragement and helpful comments by Professor Takeo Ohsawa on this study.
科研通智能强力驱动
Strongly Powered by AbleSci AI