控制理论(社会学)
模型预测控制
线性二次调节器
多元微积分
线性系统
灵活性(工程)
偏移量(计算机科学)
二次方程
计算机科学
国家(计算机科学)
数学优化
理论(学习稳定性)
线性模型
二次规划
状态空间
最优控制
数学
控制工程
控制(管理)
工程类
算法
数学分析
人工智能
机器学习
几何学
程序设计语言
统计
作者
Kenneth R. Muske,James B. Rawlings
出处
期刊:Aiche Journal
[Wiley]
日期:1993-02-01
卷期号:39 (2): 262-287
被引量:642
标识
DOI:10.1002/aic.690390208
摘要
Abstract This article discusses the existing linear model predictive control concepts in a unified theoretical framework based on a stabilizing, infinite horizon, linear quadratic regulator. In order to represent unstable as well as stable multivariable systems, the standard state‐space formulation is used for the plant model. The incorporation of a nominally stabilizing constrained regulator eliminates the current requirement of tuning for nominal stability. Output feedback is addressed in the well‐established framework of the linear quadratic state‐estimation problem. This framework allows the flexibility to handle nonsquare systems, noisy inputs and outputs, and nonzero input, output, and state disturbances. This formulation subsumes the integral control schemes designed to remove steady‐state offset currently in industrial use. The online implementation of the controller requires the solution of a standard quadratic program that is no more computationally intensive than existing algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI