A Database and Evaluation Methodology for Optical Flow

光流 计算机科学 插值(计算机图形学) 基本事实 人工智能 不连续性分类 计算机视觉 算法 帧(网络) 运动(物理) 集合(抽象数据类型) 跟踪(教育) 图像(数学) 数学 数学分析 电信 教育学 程序设计语言 心理学
作者
Simon Baker,Daniel Scharstein,J. P. Lewis,Stefan Roth,Michael J. Black,Richard Szeliski
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:92 (1): 1-31 被引量:1791
标识
DOI:10.1007/s11263-010-0390-2
摘要

The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖寻琴发布了新的文献求助10
刚刚
愤怒的水壶完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
林深完成签到,获得积分10
1秒前
蚌壳发布了新的文献求助20
1秒前
2秒前
9527完成签到,获得积分10
2秒前
高大绝义发布了新的文献求助10
2秒前
Uranus发布了新的文献求助30
2秒前
2秒前
2秒前
2秒前
3秒前
bkagyin应助vv采纳,获得10
3秒前
顺心凝海完成签到,获得积分10
3秒前
Azheng完成签到 ,获得积分10
3秒前
冰冰完成签到,获得积分10
3秒前
3秒前
陈佳琦完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
机灵哈密瓜完成签到,获得积分10
4秒前
kkkkkkkk发布了新的文献求助10
4秒前
4秒前
元宝是只傻猫完成签到,获得积分10
4秒前
5秒前
万能图书馆应助ceeray23采纳,获得20
5秒前
WYM完成签到,获得积分10
5秒前
science完成签到,获得积分10
5秒前
小猫nika完成签到,获得积分10
5秒前
今后应助温乘云采纳,获得10
6秒前
CC完成签到,获得积分10
6秒前
JayceHe完成签到,获得积分10
6秒前
猫猫叽丫丫完成签到,获得积分10
6秒前
Owen应助书山有路勤为劲采纳,获得10
6秒前
6秒前
Jasper应助yajun采纳,获得10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297