A Database and Evaluation Methodology for Optical Flow

光流 计算机科学 插值(计算机图形学) 基本事实 人工智能 不连续性分类 计算机视觉 算法 帧(网络) 运动(物理) 集合(抽象数据类型) 跟踪(教育) 图像(数学) 数学 教育学 心理学 数学分析 程序设计语言 电信
作者
Simon Baker,Daniel Scharstein,J. P. Lewis,Stefan Roth,Michael J. Black,Richard Szeliski
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:92 (1): 1-31 被引量:1791
标识
DOI:10.1007/s11263-010-0390-2
摘要

The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未闻明日之花完成签到,获得积分10
刚刚
75986686完成签到,获得积分10
刚刚
hearz发布了新的文献求助10
刚刚
负责金毛完成签到,获得积分10
刚刚
fan051500完成签到,获得积分10
1秒前
清脆乐曲完成签到,获得积分10
1秒前
arzw完成签到,获得积分10
1秒前
勤奋的天亦完成签到,获得积分10
2秒前
2秒前
哒哒哒完成签到,获得积分10
2秒前
天水张家辉完成签到,获得积分10
2秒前
2秒前
乐一李完成签到,获得积分10
3秒前
ding应助无敌是多么寂寞采纳,获得10
3秒前
zyyyyyyyy完成签到 ,获得积分10
3秒前
会飞的蜗牛完成签到,获得积分10
3秒前
沉默的凝荷完成签到,获得积分10
3秒前
布小丁完成签到,获得积分20
4秒前
lv完成签到,获得积分10
4秒前
pikachu完成签到,获得积分10
4秒前
KYTHUI完成签到,获得积分10
4秒前
贺兰鸵鸟完成签到,获得积分10
5秒前
Rain1god完成签到,获得积分10
5秒前
kma完成签到,获得积分10
5秒前
南方周末完成签到,获得积分10
5秒前
凌代萱完成签到 ,获得积分10
6秒前
阿哲完成签到,获得积分10
6秒前
myuniv发布了新的文献求助10
6秒前
莫x莫完成签到 ,获得积分10
6秒前
Tingshan完成签到,获得积分10
6秒前
静待花开完成签到 ,获得积分10
6秒前
7秒前
叶子完成签到,获得积分10
7秒前
SciGPT应助会飞的蜗牛采纳,获得10
8秒前
布小丁发布了新的文献求助10
8秒前
Treasure完成签到,获得积分10
9秒前
9秒前
xiamovivi完成签到,获得积分10
11秒前
11秒前
自由的凡白完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946045
求助须知:如何正确求助?哪些是违规求助? 4210330
关于积分的说明 13087390
捐赠科研通 3990895
什么是DOI,文献DOI怎么找? 2184843
邀请新用户注册赠送积分活动 1200218
关于科研通互助平台的介绍 1113922