Systems Pharmacology: Network Analysis to Identify Multiscale Mechanisms of Drug Action

系统药理学 系统生物学 背景(考古学) 计算生物学 药物发现 药物作用 药物开发 药理学 药品 不良结局途径 不利影响 药效学 临床药理学 生物网络 计算机科学 动作(物理) 安全药理学 神经科学 生物信息学 鉴定(生物学) 医学 生物 药代动力学 古生物学 物理 量子力学
作者
Shan Zhao,Ravi Iyengar
出处
期刊:Annual Review of Pharmacology and Toxicology [Annual Reviews]
卷期号:52 (1): 505-521 被引量:266
标识
DOI:10.1146/annurev-pharmtox-010611-134520
摘要

Systems approaches have long been used in pharmacology to understand drug action at the organ and organismal levels. The application of computational and experimental systems biology approaches to pharmacology allows us to expand the definition of systems pharmacology to include network analyses at multiple scales of biological organization and to explain both therapeutic and adverse effects of drugs. Systems pharmacology analyses rely on experimental "omics" technologies that are capable of measuring changes in large numbers of variables, often at a genome-wide level, to build networks for analyzing drug action. A major use of omics technologies is to relate the genomic status of an individual to the therapeutic efficacy of a drug of interest. Combining pathway and network analyses, pharmacokinetic and pharmacodynamic models, and a knowledge of polymorphisms in the genome will enable the development of predictive models of therapeutic efficacy. Network analyses based on publicly available databases such as the U.S. Food and Drug Administration's Adverse Event Reporting System allow us to develop an initial understanding of the context within which molecular-level drug-target interactions can lead to distal effectors in a process that results in adverse phenotypes at the organ and organismal levels. The current state of systems pharmacology allows us to formulate a set of questions that could drive future research in the field. The long-term goal of such research is to develop polypharmacology for complex diseases and predict therapeutic efficacy and adverse event risk for individuals prior to commencement of therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZC发布了新的文献求助10
刚刚
畅快平露发布了新的文献求助10
1秒前
二零三完成签到,获得积分10
1秒前
2秒前
xixi发布了新的文献求助10
2秒前
耍酷败完成签到,获得积分10
3秒前
透明人完成签到,获得积分10
3秒前
4秒前
5秒前
Natasha发布了新的文献求助10
5秒前
耍酷败发布了新的文献求助10
5秒前
赘婿应助开朗的之卉采纳,获得10
5秒前
dddy发布了新的文献求助10
6秒前
kccccccc发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
jiangshanshan发布了新的文献求助10
9秒前
11秒前
11秒前
研友_ZlqeD8完成签到,获得积分10
12秒前
14秒前
CipherSage应助dddy采纳,获得10
15秒前
15秒前
16秒前
LXx完成签到 ,获得积分10
16秒前
orixero应助kiseki采纳,获得30
16秒前
会编程真是太好了完成签到 ,获得积分10
16秒前
orixero应助cure采纳,获得10
17秒前
22秒前
22秒前
SciGPT应助kccccccc采纳,获得10
22秒前
黄柠檬完成签到 ,获得积分10
24秒前
24秒前
26秒前
28秒前
Tracy麦子发布了新的文献求助10
28秒前
忐忑的黑猫应助wanderer采纳,获得10
28秒前
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465585
求助须知:如何正确求助?哪些是违规求助? 3058692
关于积分的说明 9062766
捐赠科研通 2749086
什么是DOI,文献DOI怎么找? 1508305
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696557