亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Soft-Tissue Vascular Anomalies: Utility of US for Diagnosis

医学 血管畸形 动静脉畸形 血管瘤 血管异常 静脉畸形 淋巴系统 软组织 血管疾病 放射科 病理 外科
作者
Harriet J. Paltiel,Patricia E. Burrows,Harry P. Kozakewich,David Zurakowski,John B. Mulliken
出处
期刊:Radiology [Radiological Society of North America]
卷期号:214 (3): 747-754 被引量:365
标识
DOI:10.1148/radiology.214.3.r00mr21747
摘要

To determine the ultrasonographic (US) features that distinguish soft-tissue hemangioma from vascular malformation and one type of malformation from another.Eighty-seven vascular anomalies were evaluated by means of US. Lesions were assessed for the presence of solid tissue and abnormal arteries, veins, or cysts. Vessel density, peak flow velocities, and resistive indexes were compared.There were 49 hemangiomas and 38 vascular malformations. A significantly greater proportion of hemangiomas (48 of 49) compared with vascular malformations (zero of 38) consisted of a solid-tissue mass (P < .001). Vessel density was comparable for hemangioma and arteriovenous malformation (AVM) but significantly greater compared with the other vascular malformations (P < .001 in each case). No differences in mean arterial peak velocity were detected between hemangiomas and malformations. Mean venous peak velocity was significantly higher for AVM than for other vascular malformations and hemangioma. Mean resistive index was greater for lymphatic malformation than for hemangioma or AVM. Abnormal veins, arteries and veins, or cysts were univariate predictors for distinguishing between venous, arteriovenous, and lymphatic malformations (P < .001 in all cases). Solid-tissue mass was the only multivariate predictor for differentiating hemangioma from vascular malformation (likelihood ratio test = 109.8, P < .001).US can be used to distinguish hemangioma from vascular malformation and detect arterial flow. These distinctions are critical for subsequent management and assessing prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
dawn发布了新的文献求助10
11秒前
善学以致用应助Fluoxtine采纳,获得10
25秒前
黑鲨完成签到 ,获得积分10
25秒前
Ava应助粗暴的坤采纳,获得10
28秒前
瘦瘦的迎南完成签到 ,获得积分10
30秒前
31秒前
谷雨秋发布了新的文献求助10
34秒前
44秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
J_Xu完成签到 ,获得积分10
1分钟前
所所应助凛玖niro采纳,获得10
1分钟前
1分钟前
凛玖niro发布了新的文献求助10
1分钟前
霖槿完成签到,获得积分10
1分钟前
1分钟前
十八完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
liuliu发布了新的文献求助30
3分钟前
3分钟前
烟花应助Li采纳,获得10
3分钟前
liuliu完成签到,获得积分20
3分钟前
3分钟前
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
4分钟前
4分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
上官若男应助Marshall采纳,获得10
4分钟前
4分钟前
4分钟前
Marshall发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587