A hybrid approach to breast cancer diagnosis

医学 乳腺癌 肿瘤科 放射科 内科学 癌症
作者
Margarita Sordo,Hilary Buxton,Des Watson
出处
期刊:International series in intelligent technologies 卷期号:: 299-330 被引量:7
标识
DOI:10.1007/978-94-010-0678-1_10
摘要

In vivo 31P Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique for the observation of phosphorus-containing metabolites and intracellular pH. MRS plays an important role in the investigation of cell biochemistry and offers a reliable means for detection of metabolic changes in breast tissue. However, the scarcity of 31P MRS data and the complexity of interpretation of relevant physiological information impose extra demands that preclude the applicability of most statistical and machine learning techniques developed so far. To overcome such constraints, we propose Knowledge-Based Artificial Neural Networks (KBANNs) [1], a hybrid methodology that combines knowledge from a domain in the form of simple rules with connectionist learning. This combination allows the use of small sets of data (typical of medical diagnosis tasks) to train the network. The initial structure is set from the dependencies of a set of known domain rules and it is only necessary to refine these rules by training. In this chapter, we present KBANNs with a topology derived from knowledge elicited from the domain of metabolic features of normal and malignant mammary tissues. KBANN performance is assessed over the classification of 26in vivo 31P spectra of normal and cancerous breast tissues. Results confirm the suitability of KBANNs as a computational aid capable of classifying complex and limited data in a medical domain. The present study is part of an ongoing investigation into normal and abnormal breast physiology, which may help in the non-invasive early detection of breast cancer [2], [3].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
无名老大应助科研通管家采纳,获得20
刚刚
Marvin发布了新的文献求助10
2秒前
3秒前
LMY完成签到 ,获得积分10
3秒前
4秒前
大山完成签到,获得积分10
4秒前
顾矜应助嘿嘿采纳,获得10
6秒前
7秒前
紫愿完成签到 ,获得积分10
9秒前
hera_jojo发布了新的文献求助10
9秒前
搞怪凝云发布了新的文献求助10
12秒前
13秒前
15秒前
小菜完成签到 ,获得积分10
16秒前
Marvin完成签到,获得积分10
16秒前
大个应助自由小萱采纳,获得10
16秒前
gty发布了新的文献求助10
17秒前
小木完成签到,获得积分10
17秒前
19秒前
缥缈的冬萱完成签到,获得积分10
20秒前
21秒前
上官若男应助研友_LmgbdZ采纳,获得10
21秒前
嘻哈小天才完成签到,获得积分10
21秒前
小巴德完成签到,获得积分10
26秒前
27秒前
酷波er应助周周采纳,获得10
28秒前
gty完成签到,获得积分10
29秒前
Mengzhen Du完成签到,获得积分10
30秒前
CodeCraft应助龙华之士采纳,获得10
31秒前
32秒前
33秒前
33秒前
酷炫小懒虫完成签到,获得积分10
34秒前
奋斗画板应助yippee采纳,获得10
34秒前
36秒前
淡淡十三完成签到,获得积分10
37秒前
38秒前
40秒前
40秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412724
求助须知:如何正确求助?哪些是违规求助? 3015318
关于积分的说明 8869744
捐赠科研通 2703064
什么是DOI,文献DOI怎么找? 1482010
科研通“疑难数据库(出版商)”最低求助积分说明 685108
邀请新用户注册赠送积分活动 679781