A hybrid approach to breast cancer diagnosis

医学 乳腺癌 肿瘤科 放射科 内科学 癌症
作者
Margarita Sordo,Hilary Buxton,Des Watson
出处
期刊:International series in intelligent technologies 卷期号:: 299-330 被引量:7
标识
DOI:10.1007/978-94-010-0678-1_10
摘要

In vivo 31P Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique for the observation of phosphorus-containing metabolites and intracellular pH. MRS plays an important role in the investigation of cell biochemistry and offers a reliable means for detection of metabolic changes in breast tissue. However, the scarcity of 31P MRS data and the complexity of interpretation of relevant physiological information impose extra demands that preclude the applicability of most statistical and machine learning techniques developed so far. To overcome such constraints, we propose Knowledge-Based Artificial Neural Networks (KBANNs) [1], a hybrid methodology that combines knowledge from a domain in the form of simple rules with connectionist learning. This combination allows the use of small sets of data (typical of medical diagnosis tasks) to train the network. The initial structure is set from the dependencies of a set of known domain rules and it is only necessary to refine these rules by training. In this chapter, we present KBANNs with a topology derived from knowledge elicited from the domain of metabolic features of normal and malignant mammary tissues. KBANN performance is assessed over the classification of 26in vivo 31P spectra of normal and cancerous breast tissues. Results confirm the suitability of KBANNs as a computational aid capable of classifying complex and limited data in a medical domain. The present study is part of an ongoing investigation into normal and abnormal breast physiology, which may help in the non-invasive early detection of breast cancer [2], [3].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
ewasxz发布了新的文献求助10
1秒前
juanjuan完成签到,获得积分10
2秒前
ding应助Moonpie采纳,获得10
2秒前
2秒前
万能图书馆应助Regina采纳,获得10
2秒前
3秒前
乐乐应助笑嘻嘻采纳,获得10
3秒前
叶子完成签到,获得积分10
3秒前
ohio关注了科研通微信公众号
3秒前
5秒前
大模型应助shenerqing采纳,获得10
5秒前
夏傥完成签到,获得积分10
6秒前
小迷糊发布了新的文献求助10
6秒前
6秒前
6秒前
odetta发布了新的文献求助10
7秒前
7秒前
Hello应助Keyl采纳,获得10
7秒前
安逸发布了新的文献求助10
7秒前
星河发布了新的文献求助10
8秒前
夏傥发布了新的文献求助10
8秒前
CodeCraft应助webel采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得20
10秒前
Lee发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
菲菲应助科研通管家采纳,获得10
10秒前
烂漫的筮完成签到,获得积分10
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
longer发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685