Summary. Objective: To assess the antithrombotic and profibrinolytic effects of tiplaxtinin (PAI-039), an orally bioavailable antagonist of PAI-1, in rat models of thrombosis. Methods and results: Carotid artery and vena cava vascular injury was produced by application of FeCl3 and blood flow was monitored using ultrasonic technology. To assess efficacy in a thrombosis prevention paradigm, PAI-039 was administered orally 90 min before injury (1–30 mg kg−1). To assess efficacy in a thrombosis treatment paradigm, vascular injury and stable thrombus formation were followed 4 h later by recovery and PAI-039 administration. PAI-039 prevented carotid artery occlusion in 20, 68 and 60% of animals pretreated with 0.3, 1.0 and 3.0 mg kg−1, respectively. Time to occlusive thrombosis was increased from 18.2 ± 4.6 min in controls to 32.5 ± 8.7 (P = ns), 46.1 ± 7.0 (P < 0.05), and 41.6 ± 11.3 min (P < 0.05) in the respective PAI-039 treatment groups. In the vena cava protocol, PAI-039 pretreatment significantly reduced thrombus weight at PAI-039 doses of 3, 10 and 30 mg kg−1. When PAI-039 was dosed in a treatment paradigm 4 h after stable arterial and venous thrombosis, a significant reduction in thrombus weight was observed 24 h later at PAI-039 doses of 3, 10 and 30 mg kg−1. PAI-039 (10, 30 and 100 mg kg−1) had no effect on platelet aggregation in response to ADP or collagen and was not associated with increased bleeding or prolonged prothrombin time. In animals bearing no vascular injury, PAI-039 had no effect on circulating, low-levels of PAI-1 activity. In contrast, circulating PAI-1 activity increased 5-fold following the induction of vascular injury, which was completely neutralized by PAI-039. Conclusions: PAI-039 exerts antithrombotic efficacy in rat models of arterial and venous vascular injury without effecting platelet aggregation.