细胞内
化学
刺激
收缩(语法)
肌肉疲劳
细胞内pH值
内科学
解剖
医学
肌电图
生物化学
物理医学与康复
作者
LaDora V. Thompson,Edward M. Balog,Robert H. Fitts
出处
期刊:American Journal of Physiology-cell Physiology
[American Physiological Society]
日期:1992-06-01
卷期号:262 (6): C1507-C1512
被引量:24
标识
DOI:10.1152/ajpcell.1992.262.6.c1507
摘要
The purpose of this study was to utilize glass microelectrodes to characterize the intracellular pH (pHi) before and during recovery from fatigue in the frog semitendinosus (ST) muscle. A second objective was to evaluate the relationship between pHi and contractile function. The frog ST muscle (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. Peak tetanic force (Po) was reduced to 8.5% of initial force and recovered in a biphasic manner, returning to the resting value by 40 min. Resting pHi was 7.00 +/- 0.02 (n = 37) and declined with fatigue to an average value of 6.42 at 3 min of recovery. During recovery pHi significantly increased and by 25 min had returned to the prefatigue value. The pHi recovery was highly correlated to the slow phase of Po recovery (r = 0.98, P less than 0.001). The mean resting membrane potential was -78 +/- 1.0 mV (n = 42) and at 3 min of recovery was depolarized to -67 +/- 4 mV. Both the peak rate of twitch force development (+dP/dt) (r = 0.99, P less than 0.001) and decline (-dP/dt) (r = 0.94, P less than 0.014) were highly correlated to pHi during the slow phase of recovery. Contraction time (CT) and one-half relaxation time (1/2RT) increased significantly and recovered exponentially. The recovery of CT and 1/2RT were both significantly correlated to pHi (r = -0.93, P less than 0.001 and r = -0.86, P less than 0.001 for CT and 1/2RT, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)
科研通智能强力驱动
Strongly Powered by AbleSci AI