CMGN: a conditional molecular generation net to design target-specific molecules with desired properties

化学空间 计算机科学 药物设计 生成模型 人工智能 过程(计算) 生物系统 自回归模型 机器学习 药物发现 生成语法 数学 生物信息学 生物 计量经济学 操作系统
作者
Minjian Yang,Hanyu Sun,Xue Li,Xi Xue,Yafeng Deng,Xiaojian Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:1
标识
DOI:10.1093/bib/bbad185
摘要

The rational design of chemical entities with desired properties for a specific target is a long-standing challenge in drug design. Generative neural networks have emerged as a powerful approach to sample novel molecules with specific properties, termed as inverse drug design. However, generating molecules with biological activity against certain targets and predefined drug properties still remains challenging. Here, we propose a conditional molecular generation net (CMGN), the backbone of which is a bidirectional and autoregressive transformer. CMGN applies large-scale pretraining for molecular understanding and navigates the chemical space for specified targets by fine-tuning with corresponding datasets. Additionally, fragments and properties were trained to recover molecules to learn the structure-properties relationships. Our model crisscrosses the chemical space for specific targets and properties that control fragment-growth processes. Case studies demonstrated the advantages and utility of our model in fragment-to-lead processes and multi-objective lead optimization. The results presented in this paper illustrate that CMGN has the potential to accelerate the drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
5秒前
觅海完成签到,获得积分10
6秒前
fanfan发布了新的文献求助10
7秒前
9秒前
俊杰发布了新的文献求助30
10秒前
SYLH应助hhh采纳,获得10
10秒前
觅海发布了新的文献求助10
11秒前
14秒前
无敌小汐完成签到,获得积分10
14秒前
毛蕊发布了新的文献求助10
15秒前
hlx关注了科研通微信公众号
17秒前
17秒前
18秒前
兴奋的小虾米完成签到,获得积分10
18秒前
21秒前
MingqingFang发布了新的文献求助10
21秒前
21秒前
爆米花应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
25秒前
Boo发布了新的文献求助10
26秒前
wwk发布了新的文献求助10
27秒前
www完成签到 ,获得积分10
29秒前
an完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824