Multimodal Mutual Attention-Based Sentiment Analysis Framework Adapted to Complicated Contexts

情绪分析 计算机科学 语义学(计算机科学) 人工智能 自然语言处理 机器学习 程序设计语言
作者
Lijun He,Ziqing Wang,Liejun Wang,Fan Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 7131-7143 被引量:14
标识
DOI:10.1109/tcsvt.2023.3276075
摘要

Sentiment analysis has broad application prospects in the field of social opinion mining. The openness and invisibility of the internet makes users' expression styles more diverse and thus results in the blooming of complicated contexts in which different unimodal data have inconsistent sentiment tendencies. However, most sentiment analysis algorithms only focus on designing multimodal fusion methods without preserving the individual semantics of each unimodal data. To avoid misunderstandings caused by ambiguity and sarcasm in complicated contexts, we propose a multimodal mutual attention-based sentiment analysis (MMSA) framework adapted to complicated contexts, which consists of three levels of subtasks to preserve the unimodal unique semantics and enhance the common semantics, to mine the association between unique semantics and common semantics and to balance decisions from unique and common semantics. In the framework, a multiperspective and hierarchical fusion (MHF) module is developed to fully fuse multimodal data, in which different modalities are mutually constrained and the fusion order is adjusted in the next step to enhance cross-modal complementarity. To balance the data, we calculate the loss by applying different weights to positive and negative samples. The experimental results on the CH-SIMS multimodal dataset show that our method outperforms existing multimodal sentiment analysis algorithms.The code of this work is available at https://gitee.com/viviziqing/mmsacode .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研人发布了新的文献求助10
刚刚
俏皮慕凝发布了新的文献求助10
刚刚
CipherSage应助Binbin采纳,获得10
1秒前
温柔沛槐完成签到,获得积分10
1秒前
无误发布了新的文献求助10
2秒前
共享精神应助于水清采纳,获得10
2秒前
bcc666发布了新的文献求助10
3秒前
xlc发布了新的文献求助10
4秒前
sunrise发布了新的文献求助10
4秒前
罗梦芬完成签到,获得积分10
4秒前
zyx完成签到,获得积分10
5秒前
格兰德法泽尔完成签到,获得积分10
6秒前
zsj完成签到 ,获得积分10
8秒前
10秒前
科研人完成签到,获得积分10
12秒前
星辰大海应助zhuling采纳,获得10
12秒前
发光的小Q发布了新的文献求助10
12秒前
lili完成签到,获得积分10
12秒前
12秒前
静然完成签到,获得积分10
13秒前
NexusExplorer应助bcc666采纳,获得10
14秒前
顾矜应助chydlbb采纳,获得30
16秒前
lyg616358001完成签到,获得积分20
16秒前
丘比特应助q792309106采纳,获得10
17秒前
美亲关注了科研通微信公众号
18秒前
18秒前
18秒前
19秒前
JamesPei应助健壮的以莲采纳,获得10
20秒前
21秒前
小汪发布了新的文献求助10
21秒前
实验员小春完成签到,获得积分20
22秒前
大文字发布了新的文献求助10
23秒前
木子发布了新的文献求助10
24秒前
26秒前
活力惜寒完成签到,获得积分10
29秒前
七七丫完成签到,获得积分10
29秒前
元元完成签到,获得积分20
30秒前
star完成签到 ,获得积分10
31秒前
偷乐发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014