An active learning-based incremental deep-broad learning algorithm for unbalanced time series prediction

计算机科学 人工智能 机器学习 深度学习 时间序列 算法 系列(地层学) 渐进式学习 单变量 多元统计 生物 古生物学
作者
Xin Shen,Qun Dai,Wusat Ullah
出处
期刊:Information Sciences [Elsevier]
卷期号:642: 119103-119103 被引量:13
标识
DOI:10.1016/j.ins.2023.119103
摘要

Time series are a kind of streaming data, which are chaotic and sequential. As real-world time series data are often not available at once and drift with time growth, Incremental Learning (IL) is well suited for Time Series Prediction (TSP). Most previous incremental TSP algorithms are limited by the assumption of data balance. However, real-world time series data are often unbalanced, with long-tailed distribution and other characteristics resulting in the failure of IL algorithms. In this paper, a balanced-driven Active Learning (AL) strategy is proposed to deal with data imbalance problems in IL processes. What's more, by integrating the advantages of Deep Learning (DL) and the Broad Learning System (BLS), a novel Deep-Broad Learning (DeepBL) network with its incremental learning algorithm is proposed. The proposed Active Learning-based Incremental Deep-Broad Learning (AI_DeepBL) algorithm is applied to real-world univariate and multivariate time series datasets and achieves superior performance compared with classical and state-of-the-art TSP algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Chen采纳,获得10
1秒前
强健的蚂蚁完成签到,获得积分20
1秒前
小宇发布了新的文献求助10
1秒前
斜杠武完成签到,获得积分20
1秒前
2秒前
伞兵龙发布了新的文献求助10
2秒前
RC_Wang应助科研小民工采纳,获得10
2秒前
sanben完成签到,获得积分10
2秒前
2秒前
_蝴蝶小姐完成签到,获得积分10
3秒前
诗轩发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
迟大猫应助乐乱采纳,获得10
5秒前
万能图书馆应助派大星采纳,获得10
6秒前
FashionBoy应助娜行采纳,获得10
7秒前
7秒前
传奇3应助后知后觉采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助Chem is try采纳,获得10
8秒前
9秒前
a方舟发布了新的文献求助10
9秒前
寒冷书竹发布了新的文献求助10
9秒前
9秒前
hhh发布了新的文献求助10
9秒前
顾矜应助富婆嘉嘉子采纳,获得10
9秒前
9秒前
9秒前
10秒前
江风海韵完成签到,获得积分10
10秒前
火星上的从雪完成签到,获得积分10
10秒前
在水一方应助kai采纳,获得10
10秒前
打打应助留胡子的青柏采纳,获得10
11秒前
11秒前
zhanghw发布了新的文献求助10
11秒前
Frank完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672