Pedestrians’ road-crossing behavior towards eHMI-equipped autonomous vehicles driving in segregated and mixed traffic conditions

行人 运输工程 毒物控制 汽车工程 工程类 环境卫生 医学
作者
Song Yuanming,Qianni Jiang,Wenxiang Chen,Xiangling Zhuang,Guojie Ma
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:188: 107115-107115 被引量:12
标识
DOI:10.1016/j.aap.2023.107115
摘要

Pedestrians' road-crossing behavior can be influenced by eHMIs (external Human-Machine Interfaces) on autonomous vehicles (AVs). In this research, we developed a novel eHMI concept that aimed to support pedestrians' risk evaluation by displaying predicted real-time risk levels. In a virtual reality environment, we measured pedestrians' road-crossing behavior when they encountered AVs with this eHMI and manual-driven vehicles (MVs) in the same lane. Results showed that pedestrians exhibited typical crossing behaviors based on gap size for both vehicle types. In segregated traffic conditions, compared to MVs, eHMI-equipped AVs made pedestrians more sensitive to the changes in gap size by rejecting more small gaps and accepting more large gaps. Pedestrians also walked faster and kept larger safety margins for smaller gaps. Similar results were observed for AVs in mixed traffic conditions. However, in mixed traffic conditions, pedestrians faced more challenges when interacting with MVs as they tended to accept smaller gaps, walk more slowly, and maintain smaller safety margins. These findings indicate that dynamic risk information could be conducive to pedestrians' road-crossing behavior, but the use of eHMIs on AVs might disrupt pedestrians' interactions with MVs in complex traffic conditions. This potential risk shift among vehicles also poses the question of whether AVs should use segregated lanes to reduce their indirect impacts on pedestrian-MV interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烯灯发布了新的文献求助10
刚刚
小马甲应助somous采纳,获得20
刚刚
ARIA完成签到,获得积分10
1秒前
Breeze完成签到 ,获得积分10
1秒前
感动归尘完成签到,获得积分10
1秒前
1秒前
1秒前
华仔应助xuan采纳,获得10
1秒前
2秒前
CodeCraft应助Liens采纳,获得10
2秒前
2秒前
2秒前
ztq完成签到 ,获得积分10
3秒前
穆思柔完成签到,获得积分10
3秒前
3秒前
脑洞疼应助zxyan采纳,获得10
3秒前
科研通AI6应助zhouleiwang采纳,获得10
3秒前
冷傲惠发布了新的文献求助10
3秒前
4秒前
leyang关注了科研通微信公众号
5秒前
顾矜应助张欣宇采纳,获得10
5秒前
5秒前
王婷静完成签到,获得积分10
5秒前
5秒前
yfy_fairy完成签到,获得积分10
5秒前
神明发布了新的文献求助10
6秒前
cc发布了新的文献求助10
6秒前
Salen-Cr发布了新的文献求助10
6秒前
6秒前
科研通AI6应助灿烂千阳采纳,获得10
6秒前
泡芙应助Yiminhua采纳,获得10
6秒前
whj完成签到,获得积分20
6秒前
科研通AI6应助biu采纳,获得10
7秒前
Triumph完成签到,获得积分10
7秒前
xxx完成签到,获得积分20
7秒前
Liz1054发布了新的文献求助10
7秒前
7秒前
慕青应助可爱的海莲采纳,获得10
8秒前
蔡勇强发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836