Image Enhancement Guided Object Detection in Visually Degraded Scenes

目标检测 人工智能 计算机科学 计算机视觉 特征(语言学) 对象类检测 Viola–Jones对象检测框架 对象(语法) 特征检测(计算机视觉) 图像(数学) 模式识别(心理学) 图像处理 人脸检测 面部识别系统 语言学 哲学
作者
Hongmin Liu,Fan Jin,Hui Zeng,Huayan Pu,Bin Fan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:29
标识
DOI:10.1109/tnnls.2023.3274926
摘要

Object detection accuracy degrades seriously in visually degraded scenes. A natural solution is to first enhance the degraded image and then perform object detection. However, it is suboptimal and does not necessarily lead to the improvement of object detection due to the separation of the image enhancement and object detection tasks. To solve this problem, we propose an image enhancement guided object detection method, which refines the detection network with an additional enhancement branch in an end-to-end way. Specifically, the enhancement branch and detection branch are organized in a parallel way, and a feature guided module is designed to connect the two branches, which optimizes the shallow feature of the input image in the detection branch to be as consistent as possible with that of the enhanced image. As the enhancement branch is frozen during training, such a design plays a role in using the features of enhanced images to guide the learning of object detection branch, so as to make the learned detection branch being aware of both image quality and object detection. When testing, the enhancement branch and feature guided module are removed, and so no additional computation cost is introduced for detection. Extensive experimental results, on underwater, hazy, and low-light object detection datasets, demonstrate that the proposed method can improve the detection performance of popular detection networks (YOLO v3, Faster R-CNN, DetectoRS) significantly in visually degraded scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林建峰完成签到,获得积分10
1秒前
一一发布了新的文献求助10
2秒前
吃嘛嘛香完成签到,获得积分10
3秒前
4秒前
wenli完成签到,获得积分10
6秒前
灵犀完成签到,获得积分10
8秒前
haimianbaobao发布了新的文献求助10
10秒前
赘婿应助化学采纳,获得10
11秒前
随机获取昵称完成签到,获得积分10
12秒前
惑感完成签到 ,获得积分10
13秒前
15秒前
zho关闭了zho文献求助
16秒前
cdercder应助泡芙采纳,获得10
16秒前
18秒前
传奇3应助一一采纳,获得10
19秒前
热爱生活发布了新的文献求助10
20秒前
cheshire cat完成签到,获得积分0
21秒前
迷人世开完成签到,获得积分0
21秒前
22秒前
Lmy完成签到,获得积分10
24秒前
26秒前
26秒前
26秒前
一一完成签到,获得积分20
27秒前
CipherSage应助jun采纳,获得10
27秒前
27秒前
壮观小笼包完成签到,获得积分10
28秒前
哭泣灯泡应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
aurora应助科研通管家采纳,获得20
30秒前
Akim应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736171
求助须知:如何正确求助?哪些是违规求助? 3279959
关于积分的说明 10017840
捐赠科研通 2996576
什么是DOI,文献DOI怎么找? 1644187
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749475