Radiomic analysis of preoperative magnetic resonance imaging for the prediction of pituitary adenoma consistency

医学 组内相关 再现性 磁共振成像 垂体腺瘤 重复性 判别式 支持向量机 接收机工作特性 核医学 秩相关 腺瘤 一致性(知识库) 放射科 人工智能 机器学习 计算机科学 数学 统计 病理 内科学
作者
Bökebatur Ahmet Raşit Mendi,Halitcan Batur,Nurdan Çay,Banu Topçu Çakır
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (8): 2470-2478 被引量:5
标识
DOI:10.1177/02841851231174462
摘要

Background The consistency of pituitary adenomas affects the course of surgical treatment. Purpose To evaluate the diagnostic capabilities of radiomics based on T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance imaging (MRI) in conjunction with two machine-learning (ML) techniques (support vector machine [SVM] and random forest classifier [RFC]) for assessing the consistency of pituitary adenomas. Material and Methods The institutional database was retrospectively scanned for patients who underwent surgical excision of pituitary adenomas. Surgical notes were accepted as a reference for the adenoma consistency. Radiomics analysis was performed on preoperative coronal 3.0T T1W and T2W images. First- and second-order parameters were calculated. Inter-observer reproducibility was assessed with Spearman's Correlation (ρ) and intra-observer reproducibility was evaluated with the intraclass correlation coefficient (ICC). Least absolute shrinkage and selection operator (LASSO) was used for dimensionality reduction. SVM and RFC were used as ML methods. Results A total of 52 patients who produced 206 regions of interest (ROIs) were included. Twenty adenomas that produced 88 ROIs had firm consistency. There was both inter-observer and intra-observer reproducibility. Ten parameters that were based on T2W images with high discriminative power and without correlation were chosen by LASSO. The diagnostic performance of SVM and RFC was as follows: sensitivity = 95.580% and 92.950%, specificity = 83.670% and 88.420%, area under the curve = 0.956 and 0.904, respectively. Conclusion Radiomics analysis based on T2W MRI combined with various ML techniques, such as SVM and RFC, can provide preoperative information regarding pituitary adenoma consistency with high diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chendumo完成签到,获得积分10
1秒前
哈哈哈发布了新的文献求助10
1秒前
Jonas完成签到,获得积分10
1秒前
2秒前
5秒前
demoliu发布了新的文献求助200
5秒前
表弟慢热手完成签到 ,获得积分10
5秒前
科目三应助Jonas采纳,获得10
7秒前
9秒前
卡卡完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
NexusExplorer应助Jtiger采纳,获得10
11秒前
今后应助can采纳,获得10
13秒前
15秒前
15秒前
桐桐应助赵创采纳,获得10
15秒前
LBJBowen23发布了新的文献求助10
16秒前
宁琳发布了新的文献求助10
16秒前
赘婿应助林狗采纳,获得10
16秒前
17秒前
sunishope发布了新的文献求助10
17秒前
你是谁完成签到,获得积分10
17秒前
19秒前
持卿应助qiangy采纳,获得20
20秒前
天天快乐应助AKAAR采纳,获得10
20秒前
卜谷雪发布了新的文献求助10
21秒前
21秒前
zy494101508完成签到,获得积分10
22秒前
一禾生完成签到,获得积分10
22秒前
ding应助想瘦的海豹采纳,获得10
23秒前
传奇3应助li采纳,获得10
24秒前
LBJBowen23完成签到,获得积分10
24秒前
赘婿应助愤怒也哈哈采纳,获得10
24秒前
共享精神应助宁琳采纳,获得10
25秒前
阡陌完成签到 ,获得积分10
25秒前
salt7发布了新的文献求助10
25秒前
cl完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310576
求助须知:如何正确求助?哪些是违规求助? 2943398
关于积分的说明 8514677
捐赠科研通 2618712
什么是DOI,文献DOI怎么找? 1431344
科研通“疑难数据库(出版商)”最低求助积分说明 664461
邀请新用户注册赠送积分活动 649626