医学
组内相关
再现性
磁共振成像
垂体腺瘤
重复性
判别式
支持向量机
接收机工作特性
核医学
秩相关
腺瘤
一致性(知识库)
放射科
人工智能
机器学习
计算机科学
数学
统计
病理
内科学
作者
Bökebatur Ahmet Raşit Mendi,Halitcan Batur,Nurdan Çay,Banu Topçu Çakır
标识
DOI:10.1177/02841851231174462
摘要
Background The consistency of pituitary adenomas affects the course of surgical treatment. Purpose To evaluate the diagnostic capabilities of radiomics based on T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance imaging (MRI) in conjunction with two machine-learning (ML) techniques (support vector machine [SVM] and random forest classifier [RFC]) for assessing the consistency of pituitary adenomas. Material and Methods The institutional database was retrospectively scanned for patients who underwent surgical excision of pituitary adenomas. Surgical notes were accepted as a reference for the adenoma consistency. Radiomics analysis was performed on preoperative coronal 3.0T T1W and T2W images. First- and second-order parameters were calculated. Inter-observer reproducibility was assessed with Spearman's Correlation (ρ) and intra-observer reproducibility was evaluated with the intraclass correlation coefficient (ICC). Least absolute shrinkage and selection operator (LASSO) was used for dimensionality reduction. SVM and RFC were used as ML methods. Results A total of 52 patients who produced 206 regions of interest (ROIs) were included. Twenty adenomas that produced 88 ROIs had firm consistency. There was both inter-observer and intra-observer reproducibility. Ten parameters that were based on T2W images with high discriminative power and without correlation were chosen by LASSO. The diagnostic performance of SVM and RFC was as follows: sensitivity = 95.580% and 92.950%, specificity = 83.670% and 88.420%, area under the curve = 0.956 and 0.904, respectively. Conclusion Radiomics analysis based on T2W MRI combined with various ML techniques, such as SVM and RFC, can provide preoperative information regarding pituitary adenoma consistency with high diagnostic accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI