Radiomic analysis of preoperative magnetic resonance imaging for the prediction of pituitary adenoma consistency

医学 组内相关 再现性 磁共振成像 垂体腺瘤 重复性 判别式 支持向量机 接收机工作特性 核医学 秩相关 腺瘤 一致性(知识库) 放射科 人工智能 机器学习 计算机科学 数学 统计 病理 内科学
作者
Bökebatur Ahmet Raşit Mendi,Halitcan Batur,Nurdan Çay,Banu Topçu Çakır
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (8): 2470-2478 被引量:5
标识
DOI:10.1177/02841851231174462
摘要

Background The consistency of pituitary adenomas affects the course of surgical treatment. Purpose To evaluate the diagnostic capabilities of radiomics based on T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance imaging (MRI) in conjunction with two machine-learning (ML) techniques (support vector machine [SVM] and random forest classifier [RFC]) for assessing the consistency of pituitary adenomas. Material and Methods The institutional database was retrospectively scanned for patients who underwent surgical excision of pituitary adenomas. Surgical notes were accepted as a reference for the adenoma consistency. Radiomics analysis was performed on preoperative coronal 3.0T T1W and T2W images. First- and second-order parameters were calculated. Inter-observer reproducibility was assessed with Spearman's Correlation (ρ) and intra-observer reproducibility was evaluated with the intraclass correlation coefficient (ICC). Least absolute shrinkage and selection operator (LASSO) was used for dimensionality reduction. SVM and RFC were used as ML methods. Results A total of 52 patients who produced 206 regions of interest (ROIs) were included. Twenty adenomas that produced 88 ROIs had firm consistency. There was both inter-observer and intra-observer reproducibility. Ten parameters that were based on T2W images with high discriminative power and without correlation were chosen by LASSO. The diagnostic performance of SVM and RFC was as follows: sensitivity = 95.580% and 92.950%, specificity = 83.670% and 88.420%, area under the curve = 0.956 and 0.904, respectively. Conclusion Radiomics analysis based on T2W MRI combined with various ML techniques, such as SVM and RFC, can provide preoperative information regarding pituitary adenoma consistency with high diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏天不回来完成签到,获得积分10
1秒前
在水一方应助不烦采纳,获得10
1秒前
研友_VZG7GZ应助Sayhai采纳,获得10
1秒前
皮卡皮卡发布了新的文献求助10
2秒前
三胖发布了新的文献求助10
2秒前
2秒前
深情安青应助迅速的宛海采纳,获得10
2秒前
小古应助可靠的凝梦采纳,获得10
3秒前
徐徐完成签到,获得积分20
3秒前
3秒前
3秒前
愤怒的鲨鱼完成签到,获得积分10
4秒前
5秒前
思源应助鲸鱼采纳,获得10
5秒前
传奇3应助靓丽月饼采纳,获得10
6秒前
Iris完成签到,获得积分10
6秒前
6秒前
6秒前
搜集达人应助Gotyababy采纳,获得10
6秒前
7秒前
7秒前
angzhang发布了新的文献求助10
7秒前
柒柒完成签到,获得积分10
8秒前
8秒前
8秒前
SHIKI发布了新的文献求助10
8秒前
9秒前
科目三应助小云采纳,获得10
9秒前
安静翎完成签到,获得积分10
9秒前
Accepted发布了新的文献求助10
10秒前
10秒前
zifeimo发布了新的文献求助10
11秒前
CipherSage应助wu采纳,获得10
12秒前
余柳发布了新的文献求助10
12秒前
斌冰冰发布了新的文献求助10
12秒前
nenoaowu发布了新的文献求助10
13秒前
兑现发布了新的文献求助10
13秒前
13秒前
斑驳完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403