Radiomic analysis of preoperative magnetic resonance imaging for the prediction of pituitary adenoma consistency

医学 组内相关 再现性 磁共振成像 垂体腺瘤 重复性 判别式 支持向量机 接收机工作特性 核医学 秩相关 腺瘤 一致性(知识库) 放射科 人工智能 机器学习 计算机科学 数学 统计 病理 内科学
作者
Bökebatur Ahmet Raşit Mendi,Halitcan Batur,Nurdan Çay,Banu Topçu Çakır
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:64 (8): 2470-2478 被引量:5
标识
DOI:10.1177/02841851231174462
摘要

Background The consistency of pituitary adenomas affects the course of surgical treatment. Purpose To evaluate the diagnostic capabilities of radiomics based on T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance imaging (MRI) in conjunction with two machine-learning (ML) techniques (support vector machine [SVM] and random forest classifier [RFC]) for assessing the consistency of pituitary adenomas. Material and Methods The institutional database was retrospectively scanned for patients who underwent surgical excision of pituitary adenomas. Surgical notes were accepted as a reference for the adenoma consistency. Radiomics analysis was performed on preoperative coronal 3.0T T1W and T2W images. First- and second-order parameters were calculated. Inter-observer reproducibility was assessed with Spearman's Correlation (ρ) and intra-observer reproducibility was evaluated with the intraclass correlation coefficient (ICC). Least absolute shrinkage and selection operator (LASSO) was used for dimensionality reduction. SVM and RFC were used as ML methods. Results A total of 52 patients who produced 206 regions of interest (ROIs) were included. Twenty adenomas that produced 88 ROIs had firm consistency. There was both inter-observer and intra-observer reproducibility. Ten parameters that were based on T2W images with high discriminative power and without correlation were chosen by LASSO. The diagnostic performance of SVM and RFC was as follows: sensitivity = 95.580% and 92.950%, specificity = 83.670% and 88.420%, area under the curve = 0.956 and 0.904, respectively. Conclusion Radiomics analysis based on T2W MRI combined with various ML techniques, such as SVM and RFC, can provide preoperative information regarding pituitary adenoma consistency with high diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ldj6670采纳,获得10
刚刚
刚刚
酷波er应助shinn采纳,获得10
1秒前
rotator发布了新的文献求助10
2秒前
4秒前
6秒前
6秒前
123456完成签到 ,获得积分10
7秒前
7秒前
雪山飞龙发布了新的文献求助10
9秒前
执着的导师完成签到,获得积分10
9秒前
科研通AI5应助欧阳正义采纳,获得10
10秒前
11秒前
栗子发布了新的文献求助100
11秒前
内向寒云发布了新的文献求助10
12秒前
亚麻灰色发布了新的文献求助10
12秒前
竹外桃花完成签到,获得积分10
12秒前
开水发布了新的文献求助10
12秒前
完美世界应助肌肉干细胞采纳,获得10
14秒前
15秒前
15秒前
gg发布了新的文献求助10
16秒前
16秒前
歪比巴卜完成签到 ,获得积分10
16秒前
王才强发布了新的文献求助10
16秒前
wenbinvan完成签到,获得积分0
17秒前
欢喜的之瑶完成签到,获得积分10
18秒前
19秒前
19秒前
yx_cheng应助zhangHL采纳,获得10
19秒前
Much发布了新的文献求助10
20秒前
21秒前
upsoar发布了新的文献求助10
21秒前
怡宝1223发布了新的文献求助10
21秒前
Phil完成签到 ,获得积分10
22秒前
在途中发布了新的文献求助10
23秒前
悦耳人生完成签到 ,获得积分10
24秒前
zhaoli完成签到 ,获得积分10
24秒前
spyspy发布了新的文献求助20
25秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498