A Unified Multimodal De- and Re-Coupling Framework for RGB-D Motion Recognition

人工智能 计算机科学 RGB颜色模型
作者
Benjia Zhou,Pichao Wang,Jun Wan,Yanyan Liang,Fan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2023.3274783
摘要

Motion recognition is a promising direction in computer vision, but the training of video classification models is much harder than images due to insufficient data and considerable parameters. To get around this, some works strive to explore multimodal cues from RGB-D data. Although improving motion recognition to some extent, these methods still face sub-optimal situations in the following aspects: (i) Data augmentation, i . e ., the scale of the RGB-D datasets is still limited, and few efforts have been made to explore novel data augmentation strategies for videos; (ii) Optimization mechanism, i . e ., the tightly space-time-entangled network structure brings more challenges to spatiotemporal information modeling; And (iii) cross-modal knowledge fusion, i . e ., the high similarity between multimodal representations leads to insufficient late fusion. To alleviate these drawbacks, we propose to improve RGB-D-based motion recognition both from data and algorithm perspectives in this paper. In more detail, firstly, we introduce a novel video data augmentation method dubbed ShuffleMix, which acts as a supplement to MixUp, to provide additional temporal regularization for motion recognition. Secondly, a U nified M ultimodal D e-coupling and multi-stage R e-coupling framework, termed UMDR, is proposed for video representation learning. Finally, a novel cross-modal Complement Feature Catcher (CFCer) is explored to mine potential commonalities features in multimodal information as the auxiliary fusion stream, to improve the late fusion results. The seamless combination of these novel designs forms a robust spatiotemporal representation and achieves better performance than state-of-the-art methods on four public motion datasets. Specifically, UMDR achieves unprecedented improvements of $\uparrow 4.5\%$ on the Chalearn IsoGD dataset. Our code can be available at https://github.com/zhoubenjia/MotionRGBD-PAMI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娃娃菜完成签到,获得积分10
1秒前
小王发布了新的文献求助10
2秒前
荆轲刺秦王完成签到,获得积分10
3秒前
伊酒应助ZX采纳,获得10
3秒前
fragile发布了新的文献求助10
3秒前
山河发布了新的文献求助10
4秒前
幽魂发布了新的文献求助10
5秒前
7秒前
YH完成签到,获得积分10
9秒前
9秒前
anna1992发布了新的文献求助10
9秒前
孤独的电话完成签到,获得积分10
10秒前
11秒前
一只东北鸟完成签到 ,获得积分10
12秒前
立秋发布了新的文献求助10
12秒前
cdercder应助愤怒的qiang采纳,获得20
12秒前
12秒前
小楼发布了新的文献求助10
13秒前
乐观的涵菱完成签到,获得积分10
14秒前
Super发布了新的文献求助50
15秒前
15秒前
16秒前
笨笨十三完成签到 ,获得积分10
17秒前
澜生完成签到,获得积分10
18秒前
完美世界应助动人的老黑采纳,获得10
18秒前
Aoweia发布了新的文献求助10
19秒前
啵啵发布了新的文献求助10
21秒前
研友_LNMmW8发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
DJHKFD完成签到,获得积分10
22秒前
嘻嘻叮完成签到,获得积分10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
1226813885应助科研通管家采纳,获得10
22秒前
Qianbaor68应助科研通管家采纳,获得100
22秒前
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792