A Unified Multimodal De- and Re-Coupling Framework for RGB-D Motion Recognition

人工智能 计算机科学 RGB颜色模型
作者
Benjia Zhou,Pichao Wang,Jun Wan,Yanyan Liang,Fan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tpami.2023.3274783
摘要

Motion recognition is a promising direction in computer vision, but the training of video classification models is much harder than images due to insufficient data and considerable parameters. To get around this, some works strive to explore multimodal cues from RGB-D data. Although improving motion recognition to some extent, these methods still face sub-optimal situations in the following aspects: (i) Data augmentation, i . e ., the scale of the RGB-D datasets is still limited, and few efforts have been made to explore novel data augmentation strategies for videos; (ii) Optimization mechanism, i . e ., the tightly space-time-entangled network structure brings more challenges to spatiotemporal information modeling; And (iii) cross-modal knowledge fusion, i . e ., the high similarity between multimodal representations leads to insufficient late fusion. To alleviate these drawbacks, we propose to improve RGB-D-based motion recognition both from data and algorithm perspectives in this paper. In more detail, firstly, we introduce a novel video data augmentation method dubbed ShuffleMix, which acts as a supplement to MixUp, to provide additional temporal regularization for motion recognition. Secondly, a U nified M ultimodal D e-coupling and multi-stage R e-coupling framework, termed UMDR, is proposed for video representation learning. Finally, a novel cross-modal Complement Feature Catcher (CFCer) is explored to mine potential commonalities features in multimodal information as the auxiliary fusion stream, to improve the late fusion results. The seamless combination of these novel designs forms a robust spatiotemporal representation and achieves better performance than state-of-the-art methods on four public motion datasets. Specifically, UMDR achieves unprecedented improvements of $\uparrow 4.5\%$ on the Chalearn IsoGD dataset. Our code can be available at https://github.com/zhoubenjia/MotionRGBD-PAMI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费飞扬发布了新的文献求助10
刚刚
1秒前
爆米花应助无异常采纳,获得10
1秒前
婷婷完成签到,获得积分10
2秒前
失眠的之桃完成签到 ,获得积分10
4秒前
搜集达人应助Kinsuo采纳,获得30
4秒前
zfy完成签到 ,获得积分10
4秒前
马超发布了新的文献求助10
6秒前
无限的铅笔完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
11秒前
姣姣完成签到,获得积分10
11秒前
12秒前
良辰应助马超采纳,获得10
12秒前
科研通AI2S应助马超采纳,获得10
12秒前
13秒前
JamesPei应助费飞扬采纳,获得10
13秒前
RYAN发布了新的文献求助10
14秒前
15秒前
封听白完成签到,获得积分10
16秒前
聪明邪欢发布了新的文献求助30
16秒前
桐桐应助yixia222采纳,获得10
18秒前
18秒前
CipherSage应助jia采纳,获得10
18秒前
最初的远方完成签到,获得积分10
19秒前
Lm发布了新的文献求助10
19秒前
英勇的宛海完成签到,获得积分10
20秒前
月初完成签到 ,获得积分10
21秒前
萧水白应助lovekobe采纳,获得10
23秒前
王雨薇应助lovekobe采纳,获得10
23秒前
萧水白应助lovekobe采纳,获得10
23秒前
24秒前
梦飞关注了科研通微信公众号
25秒前
影啊影完成签到,获得积分10
26秒前
三年半完成签到,获得积分10
27秒前
大气傲易完成签到 ,获得积分10
27秒前
周乘风应助曾经二娘采纳,获得20
29秒前
山有木完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760