IDD-Net: Industrial defect detection method based on Deep-Learning

计算机科学 网(多面体) 骨干网 特征(语言学) 人工智能 可扩展性 比例(比率) 深度学习 相似性(几何) 模式识别(心理学) 图像(数学) 计算机网络 几何学 数学 语言学 哲学 物理 量子力学 数据库
作者
Zekai Zhang,Mingle Zhou,Honglin Wan,Min Li,Gang Li,Delong Han
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106390-106390 被引量:23
标识
DOI:10.1016/j.engappai.2023.106390
摘要

Detecting defects in industrial products is one of the most widespread applications of industrial automation. Various product defects, large similarities, and drastic changes in scale in industrial scenarios pose challenges to existing industrial inspection networks. This paper proposes a deep learning-based industrial defect detection method (IDD-Net) to address the above challenges. Specifically, IDD-Net has three distinct features. First, for the defects of diversity and similarity (rolled-in_scale, crazing in steel defects), IDD-Net designed a novel local–global backbone feature network (LGB-Net). Second, IDD-Net proposes a novel Three-Layer Feature Aggregation network (TFLA-Net) to solve the problem of drastic scale changes. TFLA-Net adopts a novel three-layer descending method to aggregate semantic and fine-grained features effectively. At the same time, the dense connection of adjacent nodes of TFLA-Net ensures the efficient fusion of features of different scales in the network. In particular, this paper proposes a novel IoU loss (Defect-IoU loss) for the problem of object loss deviation at different scales. The novelty of Defect-IoU Loss is that the loss value is scaled by the difference in the area of different scale objects, which is more conducive to the balance of multi-scale object loss. The experimental results show that the calculation amount of IDD-Net is only 24.9 Gflops, and the [email protected] of 79.66%, 99.5%, and 95.9% in the steel defect, aluminium defect, and PCB defect datasets were respectively obtained, surpassing all comparison models. In addition, the test in the actual industrial scene also demonstrates the feasibility of the application of IDD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
James发布了新的文献求助10
刚刚
刚刚
孤独的乐枫完成签到,获得积分10
1秒前
锦鲤完成签到,获得积分10
1秒前
1秒前
果果发布了新的文献求助10
1秒前
2秒前
xl发布了新的文献求助10
2秒前
情怀应助何俊采纳,获得10
4秒前
明亮巨人完成签到 ,获得积分10
4秒前
斯寜应助sky采纳,获得10
4秒前
思源应助sky采纳,获得10
4秒前
222完成签到,获得积分10
4秒前
深情安青应助阿哲采纳,获得10
5秒前
SSY发布了新的文献求助10
5秒前
5秒前
6秒前
Anthony完成签到 ,获得积分10
6秒前
小泽完成签到,获得积分10
7秒前
7秒前
James完成签到,获得积分10
8秒前
cctv18应助陈锦辞采纳,获得10
8秒前
科研通AI5应助阳光悟空采纳,获得10
8秒前
8秒前
晓晓完成签到,获得积分10
9秒前
Lucas应助明理楷瑞采纳,获得10
9秒前
9秒前
好困应助Alexander采纳,获得10
9秒前
10秒前
机灵飞兰应助鲜艳的访风采纳,获得10
10秒前
ran发布了新的文献求助20
10秒前
10秒前
Dr发布了新的文献求助10
11秒前
glhh发布了新的文献求助10
11秒前
小精灵发布了新的文献求助10
11秒前
小鬼发布了新的文献求助10
14秒前
15秒前
爆米花应助Dr采纳,获得10
16秒前
17秒前
sky完成签到,获得积分20
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755902
求助须知:如何正确求助?哪些是违规求助? 3299200
关于积分的说明 10109040
捐赠科研通 3013805
什么是DOI,文献DOI怎么找? 1655255
邀请新用户注册赠送积分活动 789678
科研通“疑难数据库(出版商)”最低求助积分说明 753361