亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BLUFADER: Blurred face detection & recognition for privacy-friendly continuous authentication

计算机科学 可用性 认证(法律) 计算机安全 生物识别 面部识别系统 人工智能 人机交互 特征提取
作者
Matteo Cardaioli,Mauro Conti,Gabriele Orazi,Pier Paolo Tricomi,Gene Tsudik
出处
期刊:Pervasive and Mobile Computing [Elsevier]
卷期号:92: 101801-101801
标识
DOI:10.1016/j.pmcj.2023.101801
摘要

Authentication and de-authentication phases should occur at the beginning and end of secure user sessions, respectively. A secure session requires the user to pass the former, but the latter is often underestimated or ignored. Unattended or dangling sessions expose users to well-known Lunchtime Attacks. To mitigate this threat, researchers focused on automated de-authentication systems, either as a stand-alone mechanism or as a result of continuous authentication failures. Unfortunately, no single approach offers security, privacy, and usability. Face-recognition methods, for example, may be suitable for security and usability, but they violate user privacy by continuously recording their actions and surroundings. In this work, we propose BLUFADER, a novel continuous authentication system that takes advantage of blurred face detection and recognition to fast, secure, and transparent de-authenticate users, preserving their privacy. We obfuscate a webcam with a physical blur layer and use deep learning algorithms to perform face detection and recognition continuously. To evaluate BLUFADER’s practicality, we collected two datasets formed by 30 recruited subjects (users) and thousands of physically blurred celebrity photos. The de-authentication system was trained and evaluated using the former, while the latter was used to appraise the privacy and increase variance at training time. To guarantee the privacy-preserving effectiveness of the selected physical blurring filter, we show that state-of-the-art deblurring models are not able to revert our physical blur. Further, we demonstrate that our approach outperforms state-of-the-art methods in detecting blurred faces, achieving up to 95% accuracy. Moreover, BLUFADER effectively de-authenticates users up to 100% accuracy in under 3 seconds, while satisfying security, privacy, and usability requirements. Last, our continuous authentication face recognition module based on Siamese Neural Network preventively protect users from adversarial attacks, enhancing the overall system security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Otter完成签到,获得积分10
10秒前
香蕉觅云应助ccc采纳,获得10
12秒前
18秒前
21秒前
ccc发布了新的文献求助10
23秒前
烟花应助小蒋采纳,获得10
26秒前
kikeva发布了新的文献求助10
26秒前
ccc完成签到,获得积分10
27秒前
打打应助科研通管家采纳,获得10
1分钟前
Shicheng完成签到,获得积分10
1分钟前
2分钟前
Dz1990m完成签到,获得积分10
2分钟前
Dz1990m发布了新的文献求助30
2分钟前
2分钟前
2分钟前
wbs13521发布了新的文献求助10
2分钟前
小蒋发布了新的文献求助10
2分钟前
科研通AI2S应助小蒋采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
北雨发布了新的文献求助10
5分钟前
独特的孤丹完成签到 ,获得积分10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
大个应助oscar采纳,获得10
5分钟前
祥瑞发布了新的文献求助10
5分钟前
ganggang完成签到,获得积分0
5分钟前
ganggangfu完成签到,获得积分0
6分钟前
Silvery完成签到,获得积分10
6分钟前
6分钟前
Silvery发布了新的文献求助10
6分钟前
菠萝完成签到 ,获得积分10
6分钟前
菠萝完成签到 ,获得积分10
7分钟前
情怀应助andrele采纳,获得10
8分钟前
8分钟前
郜雨寒发布了新的文献求助10
8分钟前
中中中完成签到 ,获得积分10
8分钟前
斯文的苡完成签到,获得积分10
8分钟前
月军完成签到,获得积分10
9分钟前
泥娃娃完成签到,获得积分10
9分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3175768
求助须知:如何正确求助?哪些是违规求助? 2826697
关于积分的说明 7958228
捐赠科研通 2487522
什么是DOI,文献DOI怎么找? 1326000
科研通“疑难数据库(出版商)”最低求助积分说明 634682
版权声明 602771