Deep Learning Model to Predict Ice Crystal Growth

过程(计算) 计算机科学 强化学习 铸造 人工智能 过冷 材料科学 机械工程 工艺工程 工程类 冶金 热力学 操作系统 物理
作者
Bor‐Yann Tseng,Chen‐Wei Conan Guo,Yi‐Chi Chien,Jyn‐Ping Wang,Chi‐Hua Yu
出处
期刊:Advanced Science [Wiley]
卷期号:10 (21) 被引量:3
标识
DOI:10.1002/advs.202207731
摘要

Abstract The demand for highly specific and complex materials has made the development of controllable manufacturing processes crucial. Among the numerous manufacturing methods, casting is important because it is economical and highly flexible regarding the geometry of manufactured parts. Since solidification is an important stage in the casting process that influences the properties of the final product, the development of a controllable solidification process using modeling methods is necessary to create superior structural properties. However, traditional modeling methods are computationally expensive and require sophisticated mathematical schemes. Therefore, a deep learning model is proposed to predict the morphology of the dendritic crystal growth solidification process, along with a reinforcement learning model to control the solidification process. By training the deep learning model with data generated using the phase field method, the solidification process can be successfully predicted. The crystal growth structures are designed to be altered by adjusting the degree of supercooling in the deep learning model while implementing reinforcement learning to control the dendritic arteries. This research opens new avenues for applying artificial intelligence to the optimization of casting processes, with the potential to utilize it in the processing of advanced materials and to improve the target properties of material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨羕发布了新的文献求助10
刚刚
1秒前
喃逸完成签到,获得积分10
1秒前
2秒前
3秒前
小溪溪发布了新的文献求助10
5秒前
窦一笑完成签到,获得积分10
5秒前
NexusExplorer应助Duck不必采纳,获得10
6秒前
朱凌娇完成签到,获得积分10
7秒前
7秒前
7秒前
HUU完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
dmcyer完成签到,获得积分10
9秒前
10秒前
10秒前
jiujiujiuo完成签到,获得积分10
10秒前
11秒前
11秒前
从不内卷发布了新的文献求助10
13秒前
激情的凛发布了新的文献求助10
13秒前
啦啦啦完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
A1len完成签到,获得积分10
16秒前
老迟到的钢铁侠完成签到,获得积分10
16秒前
17秒前
29发布了新的文献求助10
17秒前
原来发布了新的文献求助10
18秒前
18秒前
18秒前
kaio完成签到,获得积分10
18秒前
论高等数学的无用性完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
核桃应助Zinc采纳,获得50
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144