Machine Learning-Based prediction of Post-Treatment ambulatory blood pressure in patients with hypertension

医学 动态血压 血压 回廊的 平均差 舒张期 心脏病学 内科学 养生 置信区间
作者
Hyeonyong Hae,Soo‐Jin Kang,Tae Oh Kim,Pil Hyung Lee,Seung‐Whan Lee,Young‐Hak Kim,Cheol Whan Lee,Seong‐Wook Park
出处
期刊:Blood Pressure [Informa]
卷期号:32 (1) 被引量:6
标识
DOI:10.1080/08037051.2023.2209674
摘要

Purpose. Pre-treatment prediction of individual blood pressure (BP) response to anti-hypertensive medication is important to determine the specific regimen for promptly and safely achieving a target BP. This study aimed to develop supervised machine learning (ML) models for predicting patient-specific treatment effects using 24-hour ambulatory BP monitoring (ABPM) data.Materials and Methods. A total of 1,129 patients who had both baseline and follow-up ABPM data were randomly assigned into training, validation and test sets in a 3:1:1 ratio. Utilising the features including clinical and laboratory findings, initial ABPM data, and anti-hypertensive medication at baseline and at follow-up, ML models were developed to predict post-treatment individual BP response. Each case was labelled by the mean 24-hour and daytime BPs derived from the follow-up ABPM.Results. At baseline, 616 (55%) patients had been treated using mono or combination therapy with 45 anti-hypertensive drugs and the remaining 513 (45%) patients had been untreated (drug-naïve). By using CatBoost, the difference between predicted vs. measured mean 24-hour systolic BP at follow-up was 8.4 ± 7.0 mm Hg (% difference of 6.6% ± 5.7%). The difference between predicted vs. measured mean 24-hour diastolic BP was 5.3 ± 4.3 mm Hg (% difference of 6.8% ± 5.5%). There were significant correlations between the CatBoost-predicted vs. the ABPM-measured changes in the mean 24-hour Systolic (r = 0.74) and diastolic (r = 0.68) BPs from baseline to follow-up. Even in the patients with renal insufficiency or diabetes, the correlations between CatBoost-predicted vs. ABPM-measured BP changes were significant.Conclusion. ML algorithms accurately predict the post-treatment ambulatory BP levels, which may assist clinicians in personalising anti-hypertensive treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crab发布了新的文献求助10
1秒前
2秒前
2秒前
老肥发布了新的文献求助10
5秒前
DrugRD发布了新的文献求助50
7秒前
汉堡包应助嘟嘟小火龙采纳,获得10
8秒前
everglow完成签到,获得积分10
8秒前
8秒前
阔阔完成签到,获得积分10
13秒前
爱静静应助yyq617569158采纳,获得10
14秒前
14秒前
grnn发布了新的文献求助10
14秒前
jiwen发布了新的文献求助10
15秒前
16秒前
黄灿完成签到,获得积分10
19秒前
19秒前
你若安好发布了新的文献求助10
20秒前
22秒前
NexusExplorer应助yyq617569158采纳,获得10
23秒前
万崽秋秋糖完成签到 ,获得积分10
23秒前
xu发布了新的文献求助10
24秒前
grnn完成签到,获得积分10
24秒前
孟威发布了新的文献求助20
27秒前
饱满绮波发布了新的文献求助10
28秒前
无限的千凝完成签到 ,获得积分10
29秒前
Hello应助jiwen采纳,获得10
30秒前
31秒前
聂慕凝完成签到,获得积分10
31秒前
WYP发布了新的文献求助10
31秒前
32秒前
完美世界应助烩面大师采纳,获得10
34秒前
科研人发布了新的文献求助10
38秒前
婷婷应助xu采纳,获得10
39秒前
yyq617569158完成签到,获得积分20
39秒前
愤怒的紫发布了新的文献求助10
39秒前
40秒前
梅啦啦完成签到 ,获得积分10
41秒前
霸气水儿发布了新的文献求助10
42秒前
felix发布了新的文献求助10
43秒前
赵先森发布了新的文献求助10
44秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198