模块化设计
开发(拓扑)
计算机科学
大脑发育
安静的
功能(生物学)
心理学
发展心理学
认知心理学
神经科学
人工智能
生物
进化生物学
数学
程序设计语言
物理
数学分析
量子力学
作者
Lingbin Bian,Nizhuan Wang,Yuanning Li,Adeel Razi,Qian Wang,Han Zhang,Dinggang Shen
标识
DOI:10.1093/cercor/bhaf071
摘要
Abstract The segregation and integration of infant brain networks undergo tremendous changes due to the rapid development of brain function and organization. In this paper, we introduce a novel approach utilizing Bayesian modeling to analyze the dynamic development of functional modules in infants over time. This method retains inter-individual variability and, in comparison with conventional group averaging techniques, more effectively detects modules, taking into account the stationarity of module evolution. Furthermore, we explore gender differences in module development under awake and sleep conditions by assessing modular similarities. Our results show that female infants demonstrate more distinct modular structures between these 2 conditions, possibly implying relative quiet and restful sleep compared with male infants.
科研通智能强力驱动
Strongly Powered by AbleSci AI