亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning method for damage classification based on acoustic emission waveform analysis in composite lap bar

波形 复合数 巴(单位) 声发射 计算机科学 材料科学 声学 复合材料 物理 电信 雷达 气象学
作者
Ran Liu,Shuai Qiao,Chao Ye,Yujiao Liang,Peng-fei Zhang,Wei Zhou,Qing Li
出处
期刊:Composites and advanced materials [SAGE Publishing]
卷期号:34
标识
DOI:10.1177/26349833251323285
摘要

Carbon fiber reinforced polymer (CFRP), known for their high strength, low density, and excellent corrosion resistance, are widely used in industries such as aerospace, automotive, and wind energy. In recent years, with the growing demand for lightweight solutions in the amusement ride industry, CFRP has gradually been used in non-primary load-bearing components. The lap bar, as a critical component used to secure passengers, has become a primary focus for lightweight design. This paper presents a preliminary study on failure analysis of a composite lap bar using acoustic emission (AE) and machine learning. The main purpose is to analyze the suitability of the prepared composite lap bar in a operational conditions using a classification model. The main challenge, however, is to be able to extract valid descriptors of the damage mechanism from the acquired AE signals. The damage modes of the basic units of the composite lap bar were first characterized individually and information of Hilbert marginal energy spectrum (HMES) about the AE signal associated with each damage mechanism was collected. These spectral features and parameters were then correlated and that is used as a dataset to train the model based on k-nearest neighbor (KNN) algorithm. The model achieved an accuracy of 92% through cross-validation. Then a destructive test was conducted on the composite lap bar, and the failure process was monitored using the AE technique. The acquired AE signals were identified by the classification model. This analysis provides information on the damage process of composite lap bar at different loading stages, with matrix cracking being the more common damage mechanisms. Additionally, the microanalysis of the fracture surface also verified the effectiveness of the classification model. Meanwhile, supervised machine learning shows its potential in handling multi-dimensional data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毓雅完成签到,获得积分10
4秒前
小马甲应助顺利的尔芙采纳,获得10
7秒前
量子星尘发布了新的文献求助10
12秒前
1分钟前
ww发布了新的文献求助10
1分钟前
ww发布了新的文献求助100
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
1分钟前
九零后无心完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
lin.xy完成签到,获得积分10
2分钟前
ww发布了新的文献求助10
2分钟前
ww发布了新的文献求助10
2分钟前
al完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
ww发布了新的文献求助10
3分钟前
ww发布了新的文献求助10
3分钟前
3分钟前
3分钟前
依霏发布了新的文献求助10
3分钟前
3分钟前
shenglue发布了新的文献求助10
3分钟前
丘比特应助依霏采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
rrrrrrry发布了新的文献求助20
4分钟前
ww发布了新的文献求助20
4分钟前
岁和景明完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
fenfen发布了新的文献求助10
5分钟前
xuan发布了新的文献求助10
5分钟前
ww发布了新的文献求助10
5分钟前
xuan完成签到,获得积分10
5分钟前
大模型应助fenfen采纳,获得10
6分钟前
我是站长才怪应助西子阳采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015073
求助须知:如何正确求助?哪些是违规求助? 3555011
关于积分的说明 11317842
捐赠科研通 3288529
什么是DOI,文献DOI怎么找? 1812249
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983