Machine learning method for damage classification based on acoustic emission waveform analysis in composite lap bar

波形 复合数 巴(单位) 声发射 计算机科学 材料科学 声学 复合材料 物理 电信 气象学 雷达
作者
Ran Liu,Shuai Qiao,Chao Ye,Yujiao Liang,Peng-fei Zhang,Wei Zhou,Qing Li
出处
期刊:Composites and advanced materials [SAGE Publishing]
卷期号:34
标识
DOI:10.1177/26349833251323285
摘要

Carbon fiber reinforced polymer (CFRP), known for their high strength, low density, and excellent corrosion resistance, are widely used in industries such as aerospace, automotive, and wind energy. In recent years, with the growing demand for lightweight solutions in the amusement ride industry, CFRP has gradually been used in non-primary load-bearing components. The lap bar, as a critical component used to secure passengers, has become a primary focus for lightweight design. This paper presents a preliminary study on failure analysis of a composite lap bar using acoustic emission (AE) and machine learning. The main purpose is to analyze the suitability of the prepared composite lap bar in a operational conditions using a classification model. The main challenge, however, is to be able to extract valid descriptors of the damage mechanism from the acquired AE signals. The damage modes of the basic units of the composite lap bar were first characterized individually and information of Hilbert marginal energy spectrum (HMES) about the AE signal associated with each damage mechanism was collected. These spectral features and parameters were then correlated and that is used as a dataset to train the model based on k-nearest neighbor (KNN) algorithm. The model achieved an accuracy of 92% through cross-validation. Then a destructive test was conducted on the composite lap bar, and the failure process was monitored using the AE technique. The acquired AE signals were identified by the classification model. This analysis provides information on the damage process of composite lap bar at different loading stages, with matrix cracking being the more common damage mechanisms. Additionally, the microanalysis of the fracture surface also verified the effectiveness of the classification model. Meanwhile, supervised machine learning shows its potential in handling multi-dimensional data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修发布了新的文献求助10
刚刚
刚刚
刚刚
木香发布了新的文献求助10
1秒前
整齐南莲发布了新的文献求助30
1秒前
Shuang发布了新的文献求助10
1秒前
1秒前
gaoyunfeng完成签到,获得积分10
1秒前
月月子发布了新的文献求助10
1秒前
zhangjw完成签到 ,获得积分10
2秒前
2秒前
tolman完成签到,获得积分10
2秒前
2秒前
最棒的懒羊羊完成签到,获得积分10
2秒前
huan完成签到,获得积分10
3秒前
王唯一完成签到,获得积分10
3秒前
3秒前
4秒前
WN发布了新的文献求助10
4秒前
4秒前
完美世界应助ardejiang采纳,获得10
4秒前
4秒前
12发布了新的文献求助10
4秒前
4秒前
5秒前
keyou完成签到 ,获得积分10
5秒前
爱听歌的夏烟完成签到,获得积分10
5秒前
5秒前
美好斓发布了新的文献求助10
5秒前
花的微笑完成签到,获得积分10
6秒前
6秒前
蛋挞发布了新的文献求助10
6秒前
呆呆完成签到,获得积分10
7秒前
快乐鞋子发布了新的文献求助10
7秒前
Chensir完成签到,获得积分10
7秒前
lidm完成签到,获得积分10
8秒前
8秒前
LILI2发布了新的文献求助10
8秒前
李明发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585299
求助须知:如何正确求助?哪些是违规求助? 4002043
关于积分的说明 12389019
捐赠科研通 3678147
什么是DOI,文献DOI怎么找? 2027106
邀请新用户注册赠送积分活动 1060652
科研通“疑难数据库(出版商)”最低求助积分说明 947170