Machine learning method for damage classification based on acoustic emission waveform analysis in composite lap bar

波形 复合数 巴(单位) 声发射 计算机科学 材料科学 声学 复合材料 物理 电信 气象学 雷达
作者
Ran Liu,Shuai Qiao,Chao Ye,Yujiao Liang,Peng-fei Zhang,Wei Zhou,Qing Li
出处
期刊:Composites and advanced materials [SAGE]
卷期号:34
标识
DOI:10.1177/26349833251323285
摘要

Carbon fiber reinforced polymer (CFRP), known for their high strength, low density, and excellent corrosion resistance, are widely used in industries such as aerospace, automotive, and wind energy. In recent years, with the growing demand for lightweight solutions in the amusement ride industry, CFRP has gradually been used in non-primary load-bearing components. The lap bar, as a critical component used to secure passengers, has become a primary focus for lightweight design. This paper presents a preliminary study on failure analysis of a composite lap bar using acoustic emission (AE) and machine learning. The main purpose is to analyze the suitability of the prepared composite lap bar in a operational conditions using a classification model. The main challenge, however, is to be able to extract valid descriptors of the damage mechanism from the acquired AE signals. The damage modes of the basic units of the composite lap bar were first characterized individually and information of Hilbert marginal energy spectrum (HMES) about the AE signal associated with each damage mechanism was collected. These spectral features and parameters were then correlated and that is used as a dataset to train the model based on k-nearest neighbor (KNN) algorithm. The model achieved an accuracy of 92% through cross-validation. Then a destructive test was conducted on the composite lap bar, and the failure process was monitored using the AE technique. The acquired AE signals were identified by the classification model. This analysis provides information on the damage process of composite lap bar at different loading stages, with matrix cracking being the more common damage mechanisms. Additionally, the microanalysis of the fracture surface also verified the effectiveness of the classification model. Meanwhile, supervised machine learning shows its potential in handling multi-dimensional data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
覃小冬发布了新的文献求助10
刚刚
Jasper应助瓜崽采纳,获得10
2秒前
yx完成签到 ,获得积分10
2秒前
杰瑞院士完成签到,获得积分10
5秒前
鲤鱼绾绾完成签到,获得积分20
5秒前
00发布了新的文献求助100
9秒前
领导范儿应助从容映天采纳,获得20
9秒前
Yyn完成签到,获得积分20
10秒前
思源应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
ccnnzzz完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
huminjie完成签到 ,获得积分10
10秒前
13秒前
figure完成签到 ,获得积分10
14秒前
大意的棉花糖完成签到 ,获得积分10
14秒前
小小完成签到 ,获得积分0
14秒前
覃小冬完成签到,获得积分10
17秒前
hhh完成签到,获得积分10
17秒前
17秒前
不做第一只做唯一应助cpl采纳,获得10
18秒前
Jasper应助鲤鱼绾绾采纳,获得30
18秒前
瓜崽发布了新的文献求助10
18秒前
19秒前
科研通AI6应助binwu采纳,获得10
19秒前
zyzhnu完成签到,获得积分10
20秒前
奋斗蚂蚁完成签到 ,获得积分10
21秒前
21秒前
00完成签到,获得积分10
23秒前
yzh1129完成签到,获得积分10
24秒前
科研通AI2S应助yahonyoyoyo采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650595
关于积分的说明 14691947
捐赠科研通 4592539
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492048
关于科研通互助平台的介绍 1463269