Machine learning method for damage classification based on acoustic emission waveform analysis in composite lap bar

波形 复合数 巴(单位) 声发射 计算机科学 材料科学 声学 复合材料 物理 电信 气象学 雷达
作者
Ran Liu,Shuai Qiao,Chao Ye,Yujiao Liang,Peng-fei Zhang,Wei Zhou,Qing Li
出处
期刊:Composites and advanced materials [SAGE]
卷期号:34
标识
DOI:10.1177/26349833251323285
摘要

Carbon fiber reinforced polymer (CFRP), known for their high strength, low density, and excellent corrosion resistance, are widely used in industries such as aerospace, automotive, and wind energy. In recent years, with the growing demand for lightweight solutions in the amusement ride industry, CFRP has gradually been used in non-primary load-bearing components. The lap bar, as a critical component used to secure passengers, has become a primary focus for lightweight design. This paper presents a preliminary study on failure analysis of a composite lap bar using acoustic emission (AE) and machine learning. The main purpose is to analyze the suitability of the prepared composite lap bar in a operational conditions using a classification model. The main challenge, however, is to be able to extract valid descriptors of the damage mechanism from the acquired AE signals. The damage modes of the basic units of the composite lap bar were first characterized individually and information of Hilbert marginal energy spectrum (HMES) about the AE signal associated with each damage mechanism was collected. These spectral features and parameters were then correlated and that is used as a dataset to train the model based on k-nearest neighbor (KNN) algorithm. The model achieved an accuracy of 92% through cross-validation. Then a destructive test was conducted on the composite lap bar, and the failure process was monitored using the AE technique. The acquired AE signals were identified by the classification model. This analysis provides information on the damage process of composite lap bar at different loading stages, with matrix cracking being the more common damage mechanisms. Additionally, the microanalysis of the fracture surface also verified the effectiveness of the classification model. Meanwhile, supervised machine learning shows its potential in handling multi-dimensional data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助up采纳,获得10
刚刚
刚刚
夏就夏吧发布了新的文献求助10
刚刚
1秒前
缓慢咖啡发布了新的文献求助10
2秒前
www完成签到,获得积分10
2秒前
czc发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
晚上吃饭发布了新的文献求助10
4秒前
Athena完成签到,获得积分20
4秒前
5秒前
5秒前
6秒前
脑洞疼应助陈chen采纳,获得10
6秒前
liko完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
向本完成签到,获得积分10
10秒前
liko关注了科研通微信公众号
11秒前
11秒前
wangli发布了新的文献求助10
12秒前
久念发布了新的文献求助10
12秒前
13秒前
科研通AI6.1应助难过的臻采纳,获得100
14秒前
14秒前
彭于晏应助aub采纳,获得10
15秒前
xiaofeng发布了新的文献求助10
15秒前
16秒前
沉默寻凝完成签到,获得积分10
16秒前
无辜的丹雪应助久念采纳,获得10
16秒前
大个应助久念采纳,获得10
16秒前
16秒前
小月完成签到,获得积分10
17秒前
彭于晏应助有点儿采纳,获得10
18秒前
dh发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736188
求助须知:如何正确求助?哪些是违规求助? 5364682
关于积分的说明 15332653
捐赠科研通 4880103
什么是DOI,文献DOI怎么找? 2622609
邀请新用户注册赠送积分活动 1571580
关于科研通互助平台的介绍 1528408