亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning method for damage classification based on acoustic emission waveform analysis in composite lap bar

波形 复合数 巴(单位) 声发射 计算机科学 材料科学 声学 复合材料 物理 电信 雷达 气象学
作者
Ran Liu,Shuai Qiao,Chao Ye,Yujiao Liang,Peng-fei Zhang,Wei Zhou,Qing Li
出处
期刊:Composites and advanced materials [SAGE]
卷期号:34
标识
DOI:10.1177/26349833251323285
摘要

Carbon fiber reinforced polymer (CFRP), known for their high strength, low density, and excellent corrosion resistance, are widely used in industries such as aerospace, automotive, and wind energy. In recent years, with the growing demand for lightweight solutions in the amusement ride industry, CFRP has gradually been used in non-primary load-bearing components. The lap bar, as a critical component used to secure passengers, has become a primary focus for lightweight design. This paper presents a preliminary study on failure analysis of a composite lap bar using acoustic emission (AE) and machine learning. The main purpose is to analyze the suitability of the prepared composite lap bar in a operational conditions using a classification model. The main challenge, however, is to be able to extract valid descriptors of the damage mechanism from the acquired AE signals. The damage modes of the basic units of the composite lap bar were first characterized individually and information of Hilbert marginal energy spectrum (HMES) about the AE signal associated with each damage mechanism was collected. These spectral features and parameters were then correlated and that is used as a dataset to train the model based on k-nearest neighbor (KNN) algorithm. The model achieved an accuracy of 92% through cross-validation. Then a destructive test was conducted on the composite lap bar, and the failure process was monitored using the AE technique. The acquired AE signals were identified by the classification model. This analysis provides information on the damage process of composite lap bar at different loading stages, with matrix cracking being the more common damage mechanisms. Additionally, the microanalysis of the fracture surface also verified the effectiveness of the classification model. Meanwhile, supervised machine learning shows its potential in handling multi-dimensional data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助仁爱的凡波采纳,获得10
6秒前
mumu完成签到 ,获得积分10
7秒前
JamesPei应助科研通管家采纳,获得10
9秒前
9秒前
louqianqian发布了新的文献求助10
14秒前
科研通AI5应助louqianqian采纳,获得10
21秒前
华仔应助嘚嘚采纳,获得10
28秒前
53秒前
tlx发布了新的文献求助30
58秒前
不期而遇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
dahai发布了新的文献求助10
1分钟前
小张发布了新的文献求助10
1分钟前
XCHI完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
卓头OvQ发布了新的文献求助10
1分钟前
ifast完成签到 ,获得积分10
1分钟前
善学以致用应助小张采纳,获得10
1分钟前
浦肯野应助科研通管家采纳,获得30
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
Hqing完成签到 ,获得积分10
2分钟前
2分钟前
玖梦恨别离完成签到 ,获得积分10
2分钟前
嘚嘚发布了新的文献求助10
2分钟前
gordon完成签到,获得积分10
2分钟前
华仔应助隐形的迎南采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Owen应助嘚嘚采纳,获得10
3分钟前
3分钟前
mylRalph发布了新的文献求助30
3分钟前
斯文败类应助eve采纳,获得10
3分钟前
3分钟前
红白夹心升糖完成签到,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497453
求助须知:如何正确求助?哪些是违规求助? 3081931
关于积分的说明 9169860
捐赠科研通 2775181
什么是DOI,文献DOI怎么找? 1522781
邀请新用户注册赠送积分活动 706258
科研通“疑难数据库(出版商)”最低求助积分说明 703339