Using Quantitative EEG to Stratify Epilepsy Risk After Neonatal Encephalopathy: A Comparison of Automatically Extracted Features

脑电图 癫痫 脑病 医学 计算机科学 人工智能 内科学 精神科
作者
N. Fulton,Réjean M. Guerriero,Maire Keene,Rebekah Landre,Stuart R. Tomko,Zachary A. Vesoulis,John Zempel,ShiNung Ching,Jennifer C. Keene
出处
期刊:Journal of Clinical Neurophysiology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/wnp.0000000000001156
摘要

Purpose: Neonatal encephalopathy (NE) is a commonly encountered, highly morbid condition with a pressing need for accurate epilepsy prognostication. We evaluated the use of automated EEG for prediction of early life epilepsy after NE treated with therapeutic hypothermia (TH). Methods: We conducted retrospective analysis of neonates with moderate-to-severe NE who underwent TH at a single center. The first 24 hours of EEG data underwent automated artifact removal and quantitative EEG (qEEG) analysis with subsequent evaluation of qEEG feature accuracy at the 1st and 20th hour for epilepsy risk stratification. Results: Of 144 neonates with NE, 67 completed at least 1 year of follow-up with a neurologist and were included. Twenty-three percent had seizures ( N = 18) in the NICU and 9% developed epilepsy ( N = 6). We found multiple automatically extracted qEEG features were predictive of epilepsy as early as the first hour of life, with improved risk stratification during the first day of life. In the 20th hour EEG, absolute spectral power best stratified epilepsy risk, with area under the curve ranging from 76% to 83% across spectral frequencies, followed by range EEG features including width, SD, upper and lower margin, and median. Clinical examination did not significantly predict epilepsy development. Conclusions and significance: Quantitative EEG features significantly predicted early life epilepsy after NE. Automatically extracted qEEG may represent a practical tool for improving risk stratification for post-NE epilepsy development. Future work is needed to validate using automated EEG for prediction of epilepsy in a larger cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
求知的菜鸟完成签到,获得积分10
1秒前
allshestar完成签到 ,获得积分10
1秒前
1秒前
研友_8ov14Z完成签到,获得积分10
2秒前
Hello应助年轻的42寸采纳,获得10
4秒前
4秒前
4秒前
bluefire完成签到,获得积分10
5秒前
6秒前
憨憨发布了新的文献求助10
6秒前
田様应助源源采纳,获得10
6秒前
8秒前
8秒前
9秒前
luluna完成签到,获得积分20
10秒前
谦让的含海完成签到,获得积分10
11秒前
积极的珊发布了新的文献求助10
11秒前
12秒前
14秒前
喜悦香萱发布了新的文献求助10
14秒前
14秒前
小尾巴发布了新的文献求助10
16秒前
科研通AI5应助神勇煎蛋采纳,获得10
17秒前
小小沙发布了新的文献求助10
19秒前
乐观幻天完成签到,获得积分10
20秒前
20秒前
21秒前
搜集达人应助豆子采纳,获得10
22秒前
我是老大应助不许焦绿o采纳,获得30
22秒前
追寻索马里完成签到,获得积分10
22秒前
DragonKing关注了科研通微信公众号
22秒前
22秒前
liuwenjie应助等待的康乃馨采纳,获得10
23秒前
24秒前
25秒前
25秒前
25秒前
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555334
求助须知:如何正确求助?哪些是违规求助? 3130933
关于积分的说明 9389211
捐赠科研通 2830448
什么是DOI,文献DOI怎么找? 1555992
邀请新用户注册赠送积分活动 726371
科研通“疑难数据库(出版商)”最低求助积分说明 715737