🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Transcriptome-based insights into the role of cancer-associated fibroblasts in lung adenocarcinoma prognosis and therapy

肺癌 转录组 腺癌 医学 肿瘤科 癌症研究 内科学 癌症 生物 基因 遗传学 基因表达
作者
Yinhe Feng,Jianming Zeng,Xiaoli Zhong,Chunfang Zeng
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:: 1-16
标识
DOI:10.1080/10255842.2025.2476186
摘要

Cancer-associated fibroblasts (CAFs) are related to drug resistance and prognosis of tumor patients. This study aimed to investigate the relationship between prognosis and drug treatment response in patients with CAF and lung adenocarcinoma (LUAD). The data pertaining to LUAD patients were obtained from The Cancer Genome Atlas-LUAD and GSE68465 datasets. Four different algorithms were used to quantify CAF infiltration and stromal scores. Weighted gene network co-expression analysis was used to identify CAF-related modules and hub genes. Univariate Cox regression analysis, least absolute shrinkage and selection operator regression analysis, and multivariate Cox regression analysis were used to construct CAF signatures, whose ability to predict prognosis was verified by individual CAF scores. The CAF-related signature of eight genes was constructed, and the CAF score was calculated. The prognosis of LUAD patients with high CAF scores was significantly worse than that of patients with low CAF scores. CAF score was an independent risk factor for LUAD prognosis. Patients with high CAF scores were sensitive to some chemotherapy drugs, and in most cases, they were non-responsive to immunotherapy. Eight-gene CAF signature may predict LUAD patient prognosis and evaluate clinical responses to chemotherapy and immunotherapy, enabling individualized treatment for the patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过期武昌鱼完成签到,获得积分10
刚刚
Duummy完成签到,获得积分10
1秒前
C胖胖发布了新的文献求助10
2秒前
3秒前
5秒前
爆米花应助gGGG采纳,获得10
6秒前
6秒前
8秒前
深情的迎海完成签到,获得积分10
8秒前
swing发布了新的文献求助10
9秒前
Yey完成签到 ,获得积分10
9秒前
华仔应助Sunny采纳,获得10
11秒前
SciGPT应助滕皓轩采纳,获得10
11秒前
12秒前
12秒前
zzh319完成签到,获得积分10
13秒前
qiaoqiao发布了新的文献求助10
13秒前
13秒前
领导范儿应助空对太白酒采纳,获得10
14秒前
万能图书馆应助皮皮采纳,获得10
14秒前
achqx完成签到,获得积分20
14秒前
义气的代桃完成签到,获得积分20
15秒前
16秒前
小蘑菇应助个性醉波采纳,获得10
18秒前
gGGG发布了新的文献求助10
18秒前
领导范儿应助gx采纳,获得10
18秒前
19秒前
温暖的广缘完成签到 ,获得积分10
21秒前
wanci应助Sunny采纳,获得10
22秒前
哈哈哈完成签到,获得积分10
23秒前
23秒前
瓜子完成签到,获得积分10
24秒前
CipherSage应助沙青亦采纳,获得10
26秒前
26秒前
无花果应助uu采纳,获得10
29秒前
皮皮发布了新的文献求助10
29秒前
科研通AI5应助cc采纳,获得10
34秒前
38秒前
阳光的无剑完成签到,获得积分20
38秒前
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599605
求助须知:如何正确求助?哪些是违规求助? 3168356
关于积分的说明 9557153
捐赠科研通 2874701
什么是DOI,文献DOI怎么找? 1578272
邀请新用户注册赠送积分活动 742040
科研通“疑难数据库(出版商)”最低求助积分说明 725042