Tactile electronic skins (e-skins) are flexible electronic devices that aim to replicate tactile sensing capabilities of the human skin, while possessing skin-like geometric features and materials properties. Since the human skin is composed of complex 3D constructions, where the various types of mechanoreceptors are distributed in a spatial layout, an important trend of tactile e-skin development involves introduction of 3D device architectures that can replicate certain structural features of human skins. The resulting 3D architected e-skins have demonstrated advantages in the detection of shear forces and the decoupled perception of multiple mechanical stimuli, which are of pivotal importance in many application scenarios. In this perspective, we summarize the main biological prototypes of existing 3D architected e-skins, and focus on the key 3D architectures related to tactile sensing capabilities. Then we highlight the enhanced tactile perception of 3D architected e-skins in terms of the super-resolution tactile sensing and predictions of diverse physical properties and surface features of an object, which allow for a broad spectrum of practical applications, such as object recognition, human-machine interactions, dexterous manipulation, and health monitoring. Finally, we discuss scientific challenges and opportunities for future developments of 3D architected tactile e-skins.