Integrating Users’ Contextual Engagements with Their General Preferences: An Interpretable Followee Recommendation Method

潜在Dirichlet分配 计算机科学 偏爱 集合(抽象数据类型) 情感(语言学) 主题模型 推荐系统 语境设计 人工智能 数据科学 情报检索 机器学习 心理学 程序设计语言 微观经济学 经济 沟通 对象(语法)
作者
Yaxuan Ran,Jiani Liu,Yishi Zhang
出处
期刊:Informs Journal on Computing 卷期号:35 (3): 614-632 被引量:1
标识
DOI:10.1287/ijoc.2023.1284
摘要

Users’ contextual engagements can affect their decisions about who to follow on online social networks because engaged (versus disengaged) users tend to seek more information about the interested topic and are more likely to follow relevant accounts successively. However, existing followee recommendation methods neglect to consider contextual engagement by only relying on users’ general preferences. In the light of the chronological characteristic of the user’s following behavior, we draw on the engagement theory and propose an interpretable algorithm, namely preference-engagement latent Dirichlet allocation (PE-LDA), which integrates users’ contextual engagements with their general preferences for followee recommendation. Specifically, we suggest that if engaged in the current interest, a user will be more likely to select a followee relevant to that interest. If not, the user tends to select a followee according to their general preference. To implement this framework, we extend the original LDA by (1) introducing an indicator to represent whether the user is engaged in the current interest or not and (2) allowing a potential dependency between a user’s successive interests to describe the condition of contextual engagement. We conduct extensive experiments using a real-world Twitter data set. Results demonstrate the superior performance of PE-LDA compared with several existing methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 71702066, 71802192, 71832010, 72172112, and 72272152]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1284 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0172 ) at ( http://dx.doi.org/10.5281/zenodo.7460938 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BOBBY发布了新的文献求助10
刚刚
Boren完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
北方有相思完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Owen应助姚驰采纳,获得10
2秒前
blk完成签到,获得积分10
4秒前
李欣完成签到,获得积分10
4秒前
4秒前
小羊发布了新的文献求助10
5秒前
哭泣的煎饼完成签到,获得积分10
5秒前
555发布了新的文献求助10
5秒前
5秒前
希望天下0贩的0应助李李采纳,获得10
5秒前
夜月残阳发布了新的文献求助10
6秒前
斯文败类应助jiangchen采纳,获得10
6秒前
7秒前
ChenYI发布了新的文献求助10
7秒前
HHXDMN完成签到,获得积分10
7秒前
8秒前
科研通AI6应助嘿撒采纳,获得10
8秒前
吭吭菜菜完成签到 ,获得积分10
8秒前
李欣发布了新的文献求助10
8秒前
9秒前
高挑的鹰发布了新的文献求助50
9秒前
二仙桥成华大道完成签到,获得积分10
10秒前
超级的一曲完成签到,获得积分10
10秒前
10秒前
在水一方应助yue采纳,获得10
11秒前
11秒前
万能图书馆应助科芒采纳,获得10
12秒前
liumengyuan发布了新的文献求助10
12秒前
13秒前
13秒前
999发布了新的文献求助10
13秒前
13秒前
嘿撒完成签到,获得积分20
13秒前
龚晓莉完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942107
求助须知:如何正确求助?哪些是违规求助? 4207873
关于积分的说明 13079673
捐赠科研通 3986881
什么是DOI,文献DOI怎么找? 2182779
邀请新用户注册赠送积分活动 1198476
关于科研通互助平台的介绍 1110773