Integrating Users’ Contextual Engagements with Their General Preferences: An Interpretable Followee Recommendation Method

潜在Dirichlet分配 计算机科学 偏爱 集合(抽象数据类型) 情感(语言学) 主题模型 推荐系统 语境设计 人工智能 数据科学 情报检索 机器学习 心理学 程序设计语言 微观经济学 经济 沟通 对象(语法)
作者
Yaxuan Ran,Jiani Liu,Yishi Zhang
出处
期刊:Informs Journal on Computing 卷期号:35 (3): 614-632 被引量:1
标识
DOI:10.1287/ijoc.2023.1284
摘要

Users’ contextual engagements can affect their decisions about who to follow on online social networks because engaged (versus disengaged) users tend to seek more information about the interested topic and are more likely to follow relevant accounts successively. However, existing followee recommendation methods neglect to consider contextual engagement by only relying on users’ general preferences. In the light of the chronological characteristic of the user’s following behavior, we draw on the engagement theory and propose an interpretable algorithm, namely preference-engagement latent Dirichlet allocation (PE-LDA), which integrates users’ contextual engagements with their general preferences for followee recommendation. Specifically, we suggest that if engaged in the current interest, a user will be more likely to select a followee relevant to that interest. If not, the user tends to select a followee according to their general preference. To implement this framework, we extend the original LDA by (1) introducing an indicator to represent whether the user is engaged in the current interest or not and (2) allowing a potential dependency between a user’s successive interests to describe the condition of contextual engagement. We conduct extensive experiments using a real-world Twitter data set. Results demonstrate the superior performance of PE-LDA compared with several existing methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 71702066, 71802192, 71832010, 72172112, and 72272152]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1284 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0172 ) at ( http://dx.doi.org/10.5281/zenodo.7460938 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助豪哥大大采纳,获得10
刚刚
daisy发布了新的文献求助10
刚刚
Yy发布了新的文献求助10
刚刚
爱静静应助naivete采纳,获得10
刚刚
Shaylee完成签到,获得积分10
1秒前
上官若男应助轻松的雨旋采纳,获得10
1秒前
吴舟关注了科研通微信公众号
1秒前
1秒前
科研通AI2S应助ironsilica采纳,获得10
1秒前
精明人达发布了新的文献求助10
2秒前
2秒前
2秒前
吃鲨鱼的小虾米完成签到 ,获得积分10
2秒前
非对称转录完成签到,获得积分10
2秒前
chaowei完成签到,获得积分10
3秒前
靓丽初蓝发布了新的文献求助10
4秒前
yaohoaw关注了科研通微信公众号
4秒前
4秒前
5秒前
kourosz发布了新的文献求助10
5秒前
zdccg发布了新的文献求助10
6秒前
高贵沛槐给高贵沛槐的求助进行了留言
7秒前
7秒前
阿曼尼发布了新的文献求助10
7秒前
CipherSage应助凯忻采纳,获得10
7秒前
7秒前
8秒前
isabelwy发布了新的文献求助20
8秒前
9秒前
傅昌盛完成签到,获得积分10
9秒前
9秒前
耶耶完成签到,获得积分10
11秒前
爆米花应助JoJo采纳,获得10
11秒前
11秒前
小妤丸子完成签到,获得积分10
11秒前
Lucas应助zdccg采纳,获得10
11秒前
QingqingLi发布了新的文献求助10
11秒前
aaaacc完成签到,获得积分10
12秒前
精明煎饼完成签到,获得积分10
12秒前
CipherSage应助内向老师采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782