Integrating Users’ Contextual Engagements with Their General Preferences: An Interpretable Followee Recommendation Method

潜在Dirichlet分配 计算机科学 偏爱 集合(抽象数据类型) 情感(语言学) 主题模型 推荐系统 语境设计 人工智能 数据科学 情报检索 机器学习 心理学 沟通 对象(语法) 程序设计语言 经济 微观经济学
作者
Yaxuan Ran,Jiani Liu,Yishi Zhang
出处
期刊:Informs Journal on Computing 卷期号:35 (3): 614-632 被引量:1
标识
DOI:10.1287/ijoc.2023.1284
摘要

Users’ contextual engagements can affect their decisions about who to follow on online social networks because engaged (versus disengaged) users tend to seek more information about the interested topic and are more likely to follow relevant accounts successively. However, existing followee recommendation methods neglect to consider contextual engagement by only relying on users’ general preferences. In the light of the chronological characteristic of the user’s following behavior, we draw on the engagement theory and propose an interpretable algorithm, namely preference-engagement latent Dirichlet allocation (PE-LDA), which integrates users’ contextual engagements with their general preferences for followee recommendation. Specifically, we suggest that if engaged in the current interest, a user will be more likely to select a followee relevant to that interest. If not, the user tends to select a followee according to their general preference. To implement this framework, we extend the original LDA by (1) introducing an indicator to represent whether the user is engaged in the current interest or not and (2) allowing a potential dependency between a user’s successive interests to describe the condition of contextual engagement. We conduct extensive experiments using a real-world Twitter data set. Results demonstrate the superior performance of PE-LDA compared with several existing methods. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 71702066, 71802192, 71832010, 72172112, and 72272152]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1284 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0172 ) at ( http://dx.doi.org/10.5281/zenodo.7460938 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李青函发布了新的文献求助10
4秒前
6秒前
扭扭车发布了新的文献求助10
9秒前
moon完成签到 ,获得积分10
9秒前
10秒前
卑微老大完成签到 ,获得积分10
10秒前
summitekey完成签到 ,获得积分10
10秒前
ZJPPPP完成签到,获得积分10
11秒前
niqi发布了新的文献求助10
11秒前
12秒前
FashionBoy应助zy0411采纳,获得10
17秒前
李田田发布了新的文献求助10
18秒前
快乐马发布了新的文献求助100
19秒前
胡图图完成签到,获得积分0
19秒前
Jasper应助华半仙采纳,获得10
20秒前
Ava应助小闵采纳,获得10
21秒前
花生完成签到 ,获得积分10
22秒前
科研通AI2S应助快乐马采纳,获得10
26秒前
pluto应助扣扣登陆采纳,获得10
26秒前
忐忑的蛋糕完成签到,获得积分10
27秒前
27秒前
30秒前
Owen应助知识探索家采纳,获得10
30秒前
31秒前
SXR完成签到,获得积分10
31秒前
niqi完成签到,获得积分10
32秒前
小闵发布了新的文献求助10
32秒前
32秒前
33秒前
Majiko完成签到,获得积分10
33秒前
仇湘完成签到,获得积分10
34秒前
34秒前
TanFT发布了新的文献求助10
35秒前
囜囜发布了新的文献求助10
36秒前
阳光c完成签到 ,获得积分10
36秒前
37秒前
阔达的乘云完成签到 ,获得积分10
37秒前
38秒前
小火苗发布了新的文献求助10
38秒前
李德胜完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324