Restoration and enhancement on low exposure raw images by joint demosaicing and denoising

人工智能 计算机科学 降噪 RGB颜色模型 计算机视觉 脱模 噪音(视频) 子网 图像复原 管道(软件) 失真(音乐) 模式识别(心理学) 图像(数学) 彩色图像 图像处理 计算机网络 放大器 带宽(计算) 程序设计语言
作者
Jiaqi Ma,Guoli Wang,Lefei Zhang,Qian Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:162: 557-570 被引量:9
标识
DOI:10.1016/j.neunet.2023.03.018
摘要

Restoring high quality images from raw data in low light is challenging due to various noises caused by limited photon count and complicated Image Signal Process (ISP). Although several restoration and enhancement approaches are proposed, they may fail in extreme conditions, such as imaging short exposure raw data. The first path-breaking attempt is to utilize the connection between a pair of short and long exposure raw data and outputs RGB images as the final results. However, the whole pipeline still suffers from some blurs and color distortion. To overcome those difficulties, we propose an end-to-end network that contains two effective subnets to joint demosaic and denoise low exposure raw images. While traditional ISP are difficult to image them in acceptable conditions, the short exposure raw images can be better restored and enhanced by our model. For denoising, the proposed Short2Long raw restoration subnet outputs pseudo long exposure raw data with little noisy points. Then for demosaicing, the proposed Color consistent RGB enhancement subnet generates corresponding RGB images with the desired attributes: sharpness, color vividness, good contrast and little noise. By training the network in an end-to-end manner, our method avoids additional tuning by experts. We conduct experiments to reveal good results on three raw data datasets. We also illustrate the effectiveness of each module and the well generalization ability of this model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
已歌发布了新的文献求助10
刚刚
1秒前
汉堡包应助hhs采纳,获得10
1秒前
2秒前
2秒前
2秒前
汉堡包应助茫然树茫然果采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
大个应助迷人灰狼采纳,获得10
5秒前
TTT发布了新的文献求助10
5秒前
清秀的大山完成签到,获得积分10
5秒前
清枫完成签到,获得积分10
6秒前
6秒前
FashionBoy应助智商洼地采纳,获得10
6秒前
田様应助谷策采纳,获得10
7秒前
张zz发布了新的文献求助10
8秒前
jzt12138发布了新的文献求助10
9秒前
流氓煎蛋发布了新的文献求助10
9秒前
清枫发布了新的文献求助10
9秒前
newbiology完成签到 ,获得积分10
9秒前
10秒前
研友_V8RQEZ完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
橘子发布了新的文献求助10
14秒前
已知中的未知完成签到 ,获得积分10
14秒前
14秒前
温柔的吐司完成签到,获得积分10
15秒前
15秒前
15秒前
17秒前
18秒前
18秒前
慕青应助JL采纳,获得50
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636