Restoration and enhancement on low exposure raw images by joint demosaicing and denoising

人工智能 计算机科学 降噪 RGB颜色模型 计算机视觉 脱模 噪音(视频) 子网 图像复原 管道(软件) 失真(音乐) 模式识别(心理学) 图像(数学) 彩色图像 图像处理 计算机网络 放大器 带宽(计算) 程序设计语言
作者
Jiaqi Ma,Guoli Wang,Lefei Zhang,Qian Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 557-570 被引量:9
标识
DOI:10.1016/j.neunet.2023.03.018
摘要

Restoring high quality images from raw data in low light is challenging due to various noises caused by limited photon count and complicated Image Signal Process (ISP). Although several restoration and enhancement approaches are proposed, they may fail in extreme conditions, such as imaging short exposure raw data. The first path-breaking attempt is to utilize the connection between a pair of short and long exposure raw data and outputs RGB images as the final results. However, the whole pipeline still suffers from some blurs and color distortion. To overcome those difficulties, we propose an end-to-end network that contains two effective subnets to joint demosaic and denoise low exposure raw images. While traditional ISP are difficult to image them in acceptable conditions, the short exposure raw images can be better restored and enhanced by our model. For denoising, the proposed Short2Long raw restoration subnet outputs pseudo long exposure raw data with little noisy points. Then for demosaicing, the proposed Color consistent RGB enhancement subnet generates corresponding RGB images with the desired attributes: sharpness, color vividness, good contrast and little noise. By training the network in an end-to-end manner, our method avoids additional tuning by experts. We conduct experiments to reveal good results on three raw data datasets. We also illustrate the effectiveness of each module and the well generalization ability of this model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TvTiing完成签到,获得积分10
1秒前
banana完成签到,获得积分10
1秒前
666关闭了666文献求助
2秒前
fshell发布了新的文献求助20
2秒前
xm发布了新的文献求助10
3秒前
周声声发布了新的文献求助30
3秒前
4秒前
Lucas应助Dawson采纳,获得10
5秒前
5秒前
5秒前
Enna完成签到,获得积分10
5秒前
6秒前
6秒前
明天你好完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
liang2508发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
liang2508发布了新的文献求助10
12秒前
liang2508发布了新的文献求助10
12秒前
12秒前
liang2508发布了新的文献求助10
12秒前
英俊的铭应助小余采纳,获得10
12秒前
wanci应助xm采纳,获得10
12秒前
12秒前
12秒前
12秒前
Licifer完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154