Restoration and enhancement on low exposure raw images by joint demosaicing and denoising

人工智能 计算机科学 降噪 RGB颜色模型 计算机视觉 脱模 噪音(视频) 子网 图像复原 管道(软件) 失真(音乐) 模式识别(心理学) 图像(数学) 彩色图像 图像处理 计算机网络 放大器 程序设计语言 带宽(计算)
作者
Jiaqi Ma,Guoli Wang,Lefei Zhang,Qian Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:162: 557-570 被引量:9
标识
DOI:10.1016/j.neunet.2023.03.018
摘要

Restoring high quality images from raw data in low light is challenging due to various noises caused by limited photon count and complicated Image Signal Process (ISP). Although several restoration and enhancement approaches are proposed, they may fail in extreme conditions, such as imaging short exposure raw data. The first path-breaking attempt is to utilize the connection between a pair of short and long exposure raw data and outputs RGB images as the final results. However, the whole pipeline still suffers from some blurs and color distortion. To overcome those difficulties, we propose an end-to-end network that contains two effective subnets to joint demosaic and denoise low exposure raw images. While traditional ISP are difficult to image them in acceptable conditions, the short exposure raw images can be better restored and enhanced by our model. For denoising, the proposed Short2Long raw restoration subnet outputs pseudo long exposure raw data with little noisy points. Then for demosaicing, the proposed Color consistent RGB enhancement subnet generates corresponding RGB images with the desired attributes: sharpness, color vividness, good contrast and little noise. By training the network in an end-to-end manner, our method avoids additional tuning by experts. We conduct experiments to reveal good results on three raw data datasets. We also illustrate the effectiveness of each module and the well generalization ability of this model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MiriamYu完成签到,获得积分10
刚刚
1秒前
爱笑的枫叶完成签到,获得积分10
1秒前
璐璐发布了新的文献求助10
1秒前
jeonghan完成签到,获得积分10
1秒前
共享精神应助飞飞鱼采纳,获得10
1秒前
1秒前
1秒前
wennuo发布了新的文献求助10
2秒前
小二郎应助狼魂采纳,获得10
2秒前
2秒前
mahuahua完成签到,获得积分10
2秒前
HHH发布了新的文献求助10
2秒前
3秒前
歪歪完成签到,获得积分10
3秒前
菜鸟队长完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
xzzt完成签到 ,获得积分10
4秒前
英姑应助冷傲汽车采纳,获得10
4秒前
xinyuf完成签到,获得积分10
5秒前
5秒前
HMX发布了新的文献求助10
6秒前
hu123完成签到,获得积分10
6秒前
6秒前
7秒前
keyan应助yueweigang采纳,获得10
7秒前
纯真的盼柳完成签到,获得积分10
7秒前
7秒前
jeonghan发布了新的文献求助10
7秒前
所所应助笑点低的小天鹅采纳,获得10
8秒前
aaaaaa发布了新的文献求助10
8秒前
阿冰完成签到 ,获得积分10
8秒前
8秒前
陶醉土豆发布了新的文献求助10
8秒前
汪勇发布了新的文献求助10
9秒前
桐桐应助健忘芷采纳,获得10
9秒前
9秒前
Akim应助樊璐采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401