Exploring the Effectiveness and Efficiency of LightGBM Algorithm for Windows Malware Detection

恶意软件 计算机科学 人工智能 机器学习 二元分类 班级(哲学) 二进制数 数据挖掘 假阳性率 算法 统计分类 支持向量机 模式识别(心理学) 计算机安全 数学 算术
作者
Monday Onoja,Abayomi Jegede,Jesse Mazadu,Gilbert I.O. Aimufua,Ayodele Oyedele,Kolawole Olibodum
标识
DOI:10.1109/ited56637.2022.10051488
摘要

Malware has posed a serious problem in today's world of cyber security. Effective malware detection approaches minimize damages caused by malware attack, while efficient detection strategies reduce the amount of resources required to detect malware. A previous application of LightGBM model to malware detection shows that the technique is suitable for Windows malware detection. However, the study did not compute the training time, detection time and classification accuracy of the model. There is need to evaluate the accuracy of LightGBM algorithm and determine the time required for training it. This is because quality training produces highly reliable model. It is also necessary to compute the classification accuracy and prediction time, to enhance better decision making. This paper applied the generic LightGBM algorithm on Windows malware to determine its efficiency and effectiveness in terms of training time, prediction time and classification accuracy. Performance evaluation based on the Malimg dataset shows a 99.80% training accuracy for binary class, while the accuracy for multi-class is 96.87%. The training time of the generic LightGBM is 179.51s for binary class and 2224.77s for multi-class. The classification accuracy showed a True Positive Rate (TPR) of 99% and False Positive Rate (FPR) of 0.99% for the binary classification, while the prediction time of the model are 0.08s and 0.40s for binary and multi class respectively. The results obtained for training time, detection time and classification accuracy show that LightGBM algorithm is suitable for detecting Windows malware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的寒香完成签到 ,获得积分10
刚刚
研友_LJQ4o8完成签到,获得积分10
1秒前
lkc发布了新的文献求助10
1秒前
1秒前
雨辰完成签到,获得积分10
1秒前
卫卫完成签到 ,获得积分10
1秒前
2秒前
现代剑成完成签到,获得积分10
3秒前
杨耑耑完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
jijahui完成签到,获得积分10
4秒前
帅气惜霜发布了新的文献求助10
4秒前
4秒前
马静雨发布了新的文献求助10
5秒前
李健应助聪明可爱小绘理采纳,获得10
5秒前
小田心完成签到,获得积分10
5秒前
虚心的幻翠完成签到 ,获得积分10
5秒前
潇洒的冷玉完成签到 ,获得积分10
5秒前
星辰大海应助szmsnail采纳,获得20
6秒前
小黄应助清欢采纳,获得10
6秒前
7秒前
7秒前
华清引发布了新的文献求助30
7秒前
jijahui发布了新的文献求助10
7秒前
8秒前
sweetbearm应助通~采纳,获得10
8秒前
8秒前
8秒前
小田心发布了新的文献求助10
8秒前
甜筒发布了新的文献求助10
9秒前
Steve发布了新的文献求助10
10秒前
mjc完成签到 ,获得积分10
10秒前
研一小刘发布了新的文献求助10
10秒前
10秒前
芳芳发布了新的文献求助10
10秒前
宵宵完成签到,获得积分10
10秒前
斯文黎云发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794