Exploring the Effectiveness and Efficiency of LightGBM Algorithm for Windows Malware Detection

恶意软件 计算机科学 人工智能 机器学习 二元分类 班级(哲学) 二进制数 数据挖掘 假阳性率 算法 统计分类 支持向量机 模式识别(心理学) 计算机安全 数学 算术
作者
Monday Onoja,Abayomi Jegede,Jesse Mazadu,Gilbert I.O. Aimufua,Ayodele Oyedele,Kolawole Olibodum
标识
DOI:10.1109/ited56637.2022.10051488
摘要

Malware has posed a serious problem in today's world of cyber security. Effective malware detection approaches minimize damages caused by malware attack, while efficient detection strategies reduce the amount of resources required to detect malware. A previous application of LightGBM model to malware detection shows that the technique is suitable for Windows malware detection. However, the study did not compute the training time, detection time and classification accuracy of the model. There is need to evaluate the accuracy of LightGBM algorithm and determine the time required for training it. This is because quality training produces highly reliable model. It is also necessary to compute the classification accuracy and prediction time, to enhance better decision making. This paper applied the generic LightGBM algorithm on Windows malware to determine its efficiency and effectiveness in terms of training time, prediction time and classification accuracy. Performance evaluation based on the Malimg dataset shows a 99.80% training accuracy for binary class, while the accuracy for multi-class is 96.87%. The training time of the generic LightGBM is 179.51s for binary class and 2224.77s for multi-class. The classification accuracy showed a True Positive Rate (TPR) of 99% and False Positive Rate (FPR) of 0.99% for the binary classification, while the prediction time of the model are 0.08s and 0.40s for binary and multi class respectively. The results obtained for training time, detection time and classification accuracy show that LightGBM algorithm is suitable for detecting Windows malware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuejiajia完成签到 ,获得积分10
刚刚
刚刚
juanwu发布了新的文献求助10
刚刚
刚刚
小郭完成签到,获得积分20
3秒前
3秒前
思思发布了新的文献求助10
3秒前
某只羊完成签到 ,获得积分10
4秒前
5秒前
思源应助Pom采纳,获得10
5秒前
6秒前
都选C完成签到,获得积分10
6秒前
儒雅的巧曼完成签到,获得积分10
7秒前
7秒前
8秒前
现代的大白菜真实的钥匙完成签到,获得积分10
8秒前
星辰大海应助杰尼龟采纳,获得10
8秒前
VitoLi完成签到,获得积分10
10秒前
ysw发布了新的文献求助10
11秒前
完美世界应助儒雅的巧曼采纳,获得10
11秒前
11秒前
wennyzh完成签到,获得积分10
12秒前
12秒前
明若清完成签到,获得积分10
12秒前
12秒前
15秒前
15秒前
16秒前
成就的井完成签到,获得积分10
16秒前
16秒前
17秒前
直率的菠萝完成签到 ,获得积分10
17秒前
solitary1124完成签到,获得积分10
17秒前
yyy1234567完成签到 ,获得积分10
17秒前
Yuanyuan发布了新的文献求助10
19秒前
英姑应助laryc采纳,获得10
19秒前
杰尼龟发布了新的文献求助10
20秒前
充电宝应助学习猴采纳,获得10
20秒前
22秒前
senta完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281