Short-term photovoltaic power production forecasting based on novel hybrid data-driven models

计算机科学 过度拟合 粒子群优化 布谷鸟搜索 元启发式 支持向量机 人工神经网络 光伏系统 机器学习 稳健性(进化) 人工智能 均方误差 数据挖掘 数学优化 生物 化学 统计 基因 生物化学 数学 生态学
作者
M. R. AlRashidi,Saifur Rahman
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:10 (1) 被引量:12
标识
DOI:10.1186/s40537-023-00706-7
摘要

Abstract The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
momo应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Yuying完成签到 ,获得积分10
2秒前
2秒前
he完成签到,获得积分10
2秒前
滕遥完成签到,获得积分10
3秒前
bkagyin应助zhan采纳,获得10
3秒前
HEANZ完成签到,获得积分10
3秒前
拼搏的飞薇完成签到,获得积分10
4秒前
明明发布了新的文献求助10
4秒前
AIMS完成签到,获得积分10
4秒前
娃哈哈发布了新的文献求助10
5秒前
赘婿应助moon689采纳,获得10
5秒前
领导范儿应助德鲁大叔采纳,获得10
5秒前
李爱国应助han采纳,获得10
6秒前
媛子赚大qian完成签到,获得积分10
6秒前
6秒前
8秒前
崔博发布了新的文献求助10
8秒前
麒葩!发布了新的文献求助10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620