Explainable deep learning-based clinical decision support engine for MRI-based automated diagnosis of temporomandibular joint anterior disk displacement

人工智能 计算机科学 感兴趣区域 金标准(测试) 医学诊断 接收机工作特性 矢状面 深度学习 颞颚关节功能障碍 模式识别(心理学) 尤登J统计 颞下颌关节 磁共振成像 机器学习 医学 放射科 口腔正畸科
作者
Kyubaek Yoon,Jae‐Young Kim,Sun‐Jong Kim,Jong‐Ki Huh,Jin‐Woo Kim,Jongeun Choi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:233: 107465-107465 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107465
摘要

MRI is considered the gold standard for diagnosing anterior disc displacement (ADD), the most common temporomandibular joint (TMJ) disorder. However, even highly trained clinicians find it difficult to integrate the dynamic nature of MRI with the complicated anatomical features of the TMJ. As the first validated study for MRI-based automatic TMJ ADD diagnosis, we propose a clinical decision support engine that diagnoses TMJ ADD using MR images and provides heat maps as the visualized rationale of diagnostic predictions using explainable artificial intelligence.The engine builds on two deep learning models. The first deep learning model detects a region of interest (ROI) containing three TMJ components (i.e., temporal bone, disc, and condyle) in the entire sagittal MR image. The second deep learning model classifies TMJ ADD into three classes (i.e., normal, ADD without reduction, and ADD with reduction) within the detected ROI. In this retrospective study, the models were developed and tested on the dataset acquired between April 2005 to April 2020. The additional independent dataset acquired at a different hospital between January 2016 to February 2019 was used for the external test of the classification model. Detection performance was assessed by mean average precision (mAP). Classification performance was assessed by the area under the receiver operating characteristic (AUROC), sensitivity, specificity, and Youden's index. 95% confidence intervals were calculated via non-parametric bootstrap to assess the statistical significance of model performances.The ROI detection model achieved mAP of 0.819 at 0.75 intersection over union (IoU) thresholds in the internal test. In internal and external tests, the ADD classification model achieved AUROC values of 0.985 and 0.960, sensitivities of 0.950 and 0.926, and specificities of 0.919 and 0.892, respectively.The proposed explainable deep learning-based engine provides clinicians with the predictive result and its visualized rationale. The clinicians can make the final diagnosis by integrating primary diagnostic prediction obtained from the proposed engine with the patient's clinical examination findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助干净的新梅采纳,获得10
刚刚
1秒前
科研通AI2S应助hahahah采纳,获得10
1秒前
1秒前
2秒前
情怀应助Eason采纳,获得10
3秒前
4秒前
Limanman完成签到,获得积分10
4秒前
4秒前
5秒前
orixero应助番薯采纳,获得10
5秒前
Jeffery发布了新的文献求助10
5秒前
Leung发布了新的文献求助10
5秒前
5秒前
6秒前
NIUBEN发布了新的文献求助10
6秒前
NexusExplorer应助背后的傥采纳,获得10
6秒前
斯文败类应助心行采纳,获得10
6秒前
聪明白羊完成签到,获得积分10
6秒前
7秒前
laogao完成签到,获得积分10
7秒前
莫莫发布了新的文献求助30
7秒前
耍酷的傲白完成签到,获得积分10
7秒前
Upupupppp完成签到,获得积分10
8秒前
阜睿发布了新的文献求助10
8秒前
8秒前
阿丽完成签到,获得积分20
8秒前
Limanman发布了新的文献求助20
9秒前
suntee发布了新的文献求助10
9秒前
隐形曼青应助Zhang采纳,获得10
9秒前
qiao发布了新的文献求助10
10秒前
虚幻哦哦发布了新的文献求助10
10秒前
猫大熊完成签到,获得积分10
10秒前
上官若男应助橙橙采纳,获得10
10秒前
所所应助NM采纳,获得10
12秒前
Miao0603完成签到,获得积分10
13秒前
不配.应助猫丫采纳,获得20
13秒前
研友_VZG7GZ应助柯同采纳,获得10
13秒前
小二郎应助liurenmm采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144039
求助须知:如何正确求助?哪些是违规求助? 2795729
关于积分的说明 7816229
捐赠科研通 2451740
什么是DOI,文献DOI怎么找? 1304659
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419