材料科学
钙钛矿(结构)
光致发光
纳米晶
量子产额
激子
固溶体
光电子学
发光二极管
纳米技术
化学工程
凝聚态物理
冶金
光学
荧光
物理
工程类
作者
Zhenyang Liu,Yingying Sun,Tong Cai,Hanjun Yang,Jinxing Zhao,Tao Yin,Chaoqi Hao,Mingjun Chen,Wenwu Shi,Xiaoxiao Li,Li Guan,Xu Li,Xinzhong Wang,Aiwei Tang,Ou Chen
标识
DOI:10.1002/adma.202211235
摘要
Lead-free double perovskites have emerged as a promising class of materials with potential to be integrated into a wide range of optical and optoelectronic applications. Herein, the first synthesis of 2D Cs2 AgInx Bi1- x Cl6 (0 ≤ x ≤ 1) alloyed double perovskite nanoplatelets (NPLs) with well controlled morphology and composition is demonstrated. The obtained NPLs show unique optical properties with the highest photoluminescence quantum yield of 40.1%. Both temperature dependent spectroscopic studies and density functional theory calculation results reveal that the morphological dimension reduction and In-Bi alloying effect together boost the radiative pathway of the self-trapped excitons of the alloyed double perovskite NPLs. Moreover, the NPLs exhibit good stability under ambient conditions and against polar solvents, which is ideal for all solution-processing of the materials in low-cost device manufacturing. The first solution-processed light-emitting diodes is demonstrated using the Cs2 AgIn0.9 Bi0.1 Cl6 alloyed double perovskite NPLs as the sole emitting component, showing luminance maximum of 58 cd m-2 and peak current efficiency of 0.013 cd A-1 . This study sheds light on morphological control and composition-property relationships of double perovskite nanocrystals, paving the way toward ultimate utilizations of lead-free perovskite materials in diverse sets of real-life applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI