Artificial Intelligence–Enhanced Electrocardiography for Prediction of Incident Hypertension

医学 队列 亚临床感染 内科学 心电图 心脏病学 急诊医学
作者
Arunashis Sau,Joseph Barker,Libor Pastika,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Nicholas S. Peters,Declan P. O’Regan,James S. Ware,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
出处
期刊:JAMA Cardiology [American Medical Association]
被引量:1
标识
DOI:10.1001/jamacardio.2024.4796
摘要

Importance Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence–enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension. Objective To develop an AI-ECG risk estimator (AIRE) to predict incident hypertension (AIRE-HTN) and stratify risk for hypertension-associated adverse outcomes. Design, Setting, and Participants This was a development and external validation prognostic cohort study conducted at Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts, a secondary care setting. External validation was conducted in the UK Biobank (UKB), a UK-based volunteer cohort. AIRE-HTN was trained and tested to predict incident hypertension using routinely collected ECGs from patients at BIDMC between 2014 and 2023. The algorithm was then evaluated to risk stratify patients for hypertension- associated adverse outcomes and externally validated on UKB data between 2014 and 2022 for both incident hypertension and risk stratification Main Outcomes and Measures AIRE-HTN, which uses a residual convolutional neural network architecture with a discrete-time survival loss function, was trained to predict incident hypertension. Results AIRE-HTN was trained on 1 163 401 ECGs from 189 539 patients (mean [SD] age, 57.7 [18.7] years; 98 747 female [52.1%]) at BIDMC. A total of 19 423 BIDMC patients composed the test set and were evaluated for incident hypertension. From the UKB, AIRE-HTN was tested on 65 610 ECGs from same number of participants (mean [SD] age, 65.4 [7.9] years; 33 785 female [51.5%]). A total of 35 806 UKB patients were evaluated for incident hypertension. AIRE-HTN predicted incident hypertension (BIDMC: n = 6446 [33%] events; C index, 0.70; 95% CI, 0.69-0.71; UKB: n = 1532 [4%] events; C index, 0.70; 95% CI, 0.69-0.71). Performance was maintained in individuals without left ventricular hypertrophy and those with normal ECGs (C indices, 0.67-0.72). AIRE-HTN was significantly additive to existing clinical risk factors in predicting incident hypertension (continuous net reclassification index, BIDMC: 0.44; 95% CI, 0.33-0.53; UKB: 0.32; 95% CI, 0.23-0.37). In adjusted Cox models, AIRE-HTN score was an independent predictor of cardiovascular death (hazard ratio [HR] per standard deviation, 2.24; 95% CI, 1.67-3.00) and stratified risk for heart failure (HR, 2.60; 95% CI, 2.22-3.04), myocardial infarction (HR, 3.13; 95% CI, 2.55-3.83), ischemic stroke (HR, 1.23; 95% CI, 1.11-1.37), and chronic kidney disease (HR, 1.89; 95% CI, 1.68-2.12), beyond traditional risk factors. Conclusions and Relevance Results suggest that AIRE-HTN, an AI-ECG model, can predict incident hypertension and identify patients at risk of hypertension-related adverse events, beyond conventional clinical risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舒克完成签到,获得积分10
1秒前
2秒前
俊俊发布了新的文献求助10
2秒前
共享精神应助追寻的不正采纳,获得10
2秒前
fafa完成签到,获得积分10
2秒前
张青争完成签到,获得积分10
3秒前
星辰迷殇发布了新的文献求助10
3秒前
Hello应助LIANG采纳,获得10
4秒前
4秒前
ding应助专一的书雪采纳,获得10
4秒前
CY完成签到,获得积分10
4秒前
4秒前
西米露完成签到,获得积分10
4秒前
nozero应助Catlee采纳,获得30
5秒前
研友_VZG7GZ应助顺利的依风采纳,获得10
5秒前
5秒前
6秒前
6秒前
舒克发布了新的文献求助10
6秒前
6秒前
6秒前
温柔寄文完成签到,获得积分10
6秒前
6秒前
正直草丛发布了新的文献求助10
7秒前
7秒前
SciGPT应助私藏人间采纳,获得30
7秒前
CATT完成签到,获得积分10
7秒前
wanci应助清水采纳,获得10
8秒前
SYLH应助奶昔采纳,获得10
9秒前
9秒前
10秒前
魔幻凝云发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
超级惜筠完成签到,获得积分20
10秒前
秀丽香露发布了新的文献求助10
11秒前
泡泡鱼发布了新的文献求助10
11秒前
小李发布了新的文献求助10
11秒前
情怀应助Diss采纳,获得10
11秒前
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 535
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727082
求助须知:如何正确求助?哪些是违规求助? 3272095
关于积分的说明 9975529
捐赠科研通 2987465
什么是DOI,文献DOI怎么找? 1639017
邀请新用户注册赠送积分活动 778398
科研通“疑难数据库(出版商)”最低求助积分说明 747613