Measuring age-dependent viscoelasticity of organelles, cells and organisms with time-shared optical tweezer microrheology

微流变学 光学镊子 粘弹性 生物物理学 秀丽隐杆线虫 纳米技术 生物系统 材料科学 生物 物理 光学 复合材料 生物化学 基因
作者
Frederic Català-Castro,Santiago Ortiz-Vásquez,Carmen Martínez-Fernández,Fabio Pezzano,Carla Garcia‐Cabau,Martín Fernández-Campo,Neus Sanfeliu-Cerdán,Senda Jiménez‐Delgado,Xavier Salvatella,Verena Ruprecht,P.A. Frigeri,Michael Krieg
出处
期刊:Nature Nanotechnology [Springer Nature]
标识
DOI:10.1038/s41565-024-01830-y
摘要

Abstract Quantifying the mechanical response of the biological milieu (such as the cell’s interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency. To create a practical and robust nanorheometer, we leverage both numerical and analytical models to analyse typical deviations from the ideal behaviour and offer solutions to account for these discrepancies. We demonstrate the versatility of the technique by measuring the liquid–solid phase transitions of MEC-2 stomatin and CPEB4 biomolecular condensates, and quantify the complex viscoelastic properties of intracellular compartments of zebrafish progenitor cells. In Caenorhabditis elegans , we uncover how mutations in the nuclear envelope proteins LMN-1 lamin A, EMR-1 emerin and LEM-2 LEMD2, which cause premature aging disorders in humans, soften the cytosol of intestinal cells during organismal age. We demonstrate that time-shared optical tweezer microrheology offers the rapid phenotyping of material properties inside cells and protein blends, which can be used for biomedical and drug-screening applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marilinta完成签到,获得积分10
1秒前
zjh完成签到,获得积分10
2秒前
2秒前
3秒前
FashionBoy应助张永乐采纳,获得10
4秒前
溪听完成签到,获得积分10
4秒前
暴富完成签到,获得积分20
5秒前
小小朝完成签到,获得积分10
5秒前
努力摆烂发布了新的文献求助10
6秒前
6秒前
伴夏完成签到,获得积分10
7秒前
7秒前
7秒前
今晚打老虎完成签到,获得积分10
7秒前
8秒前
自由的奎发布了新的文献求助10
8秒前
脑洞疼应助550采纳,获得10
9秒前
wanci应助madison采纳,获得10
9秒前
温医第一打野完成签到,获得积分10
9秒前
小九xy完成签到,获得积分10
9秒前
那片叶发布了新的文献求助10
10秒前
小强完成签到,获得积分10
10秒前
科目三应助可咳咳咳采纳,获得10
10秒前
11秒前
查查make发布了新的文献求助10
11秒前
朴实惜霜发布了新的文献求助10
12秒前
12秒前
小马甲应助Plasmacas采纳,获得10
13秒前
消失在发布了新的文献求助10
13秒前
13秒前
orixero应助lmf采纳,获得30
14秒前
14秒前
大豆终结者完成签到,获得积分10
14秒前
努力摆烂完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
16秒前
老实寒凝应助LotusLi采纳,获得10
16秒前
huo应助努力摆烂采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557