材料科学
钙钛矿(结构)
复合数
发光二极管
光电子学
聚合物
二极管
纳米技术
复合材料
化学工程
工程类
作者
Ga Eun Kim,Sang-Ho Moon,June Dong Park,Minwoo Park
标识
DOI:10.1021/acsami.4c19630
摘要
Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives. However, solution-based conventional processing methods, such as spin-coating, slot-die coating, and inkjet printing are limited to planar substrates. Spray printing is a promising coating process, which can be applied for depositing composite emitters across various substrate types. In this study, we employed a spray-coating process to design planar and curved perovskite LEDs (PeLEDs) by incorporating methylammonium lead bromide (MAPbBr3) and poly(vinylpyrrolidone) (PVP) composite-based emitters. PVP played a critical role in enhancing the MAPbBr3 morphology through a strong coordination between Pb2+ ions and lone pair electrons in the PVP chains. Under optimized conditions of air pressure, spray time, and PVP concentration, the planar PeLEDs achieved a maximum luminance (Lmax) of 18,850 cd m-2, a current efficiency of 12.26 cd A-1, and an external quantum efficiency of 4.19%. The flexible PeLEDs retained their performance even after 1000 bending cycles at a bending radius of 10 mm. Furthermore, the spray-printed curved PeLEDs constructed on glass pipet- and spherical glass-based substrates demonstrated Lmax values of 3792 and 3368 cd m-2, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI