GPTrans: A Biological Language Model-Based Approach for Predicting Disease-Associated Mutations in G Protein-Coupled Receptors

计算生物学 受体 G蛋白偶联受体 生物 计算机科学 遗传学
作者
Xiaohua Wang,Ming Zhang,Xibei Yang,Dong‐Jun Yu,Fang Ge
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01999
摘要

Accurately predicting mutations in G protein-coupled receptors (GPCRs) is critical for advancing disease diagnosis and drug discovery. In response to this imperative, GPTrans has emerged as a highly accurate predictor of disease-related mutations in GPCRs. The core innovation of GPTrans resides in the design of a novel feature extraction network, that is capable of integrating features from both wildtype and mutant protein variant sites, utilizing multifeature connections within a transformer framework to ensure comprehensive feature extraction. A key aspect of GPTrans's effectiveness is our introduction of an innovative deep feature integration strategy, which merges embeddings and class tokens from multiple protein language models, including evolutionary scale modeling and ProtTrans, thus shedding light on the biochemical properties of proteins. Leveraging transformer components and a self-attention mechanism, GPTrans captures higher-level representations of protein features. Employing both wildtype and mutation site information for feature fusion not only enriches the predictive feature set but also avoids the common issue of overestimation associated with sequence-based predictions. This approach distinguishes GPTrans, enabling it to significantly outperform existing methods. Our evaluations across diverse GPCR data sets, including ClinVar and MutHTP, demonstrate GPTrans's superior performance, with average AUC values of 0.874 and 0.590 in 10-fold cross-validation. Notably, compared to the AlphaMissense method, GPTrans exhibited a remarkable 38.03% improvement in accuracy when predicting disease-associated mutations in the MutHTP data set. A thorough analysis of the predicted results further validates the model's effectiveness. The source code, data sets, and prediction results for GPTrans are available for academic use at https://github.com/EduardWang/GPTrans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cai完成签到,获得积分10
刚刚
所所应助布溜采纳,获得10
刚刚
刚刚
香蕉觅云应助此晴可待采纳,获得10
刚刚
谨慎映梦发布了新的文献求助10
1秒前
chicwhr完成签到,获得积分10
1秒前
浅梦完成签到,获得积分10
2秒前
星辰大海应助naplzp采纳,获得10
2秒前
zhaowenxian发布了新的文献求助10
3秒前
TT完成签到 ,获得积分10
3秒前
小歪同学完成签到,获得积分10
3秒前
3秒前
3秒前
nnnnnnnn完成签到,获得积分10
3秒前
3秒前
TYX完成签到,获得积分10
4秒前
763完成签到 ,获得积分10
5秒前
白宇完成签到 ,获得积分10
5秒前
如约而至发布了新的文献求助10
6秒前
7秒前
2:38am完成签到,获得积分10
7秒前
7秒前
7秒前
icerain发布了新的文献求助10
8秒前
zp完成签到,获得积分10
8秒前
9秒前
桐桐应助追寻的飞薇采纳,获得10
9秒前
李健的小迷弟应助zhuhan采纳,获得10
10秒前
木子完成签到 ,获得积分10
10秒前
10秒前
11秒前
小七发布了新的文献求助10
11秒前
昔时旧日完成签到,获得积分10
12秒前
小麦完成签到,获得积分10
12秒前
温婉的从凝完成签到,获得积分20
12秒前
Akun发布了新的文献求助10
12秒前
suiwuya完成签到,获得积分10
13秒前
柠檬完成签到,获得积分20
13秒前
小王小王发布了新的文献求助10
13秒前
努力奔跑完成签到 ,获得积分10
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408656
求助须知:如何正确求助?哪些是违规求助? 3012730
关于积分的说明 8855601
捐赠科研通 2699976
什么是DOI,文献DOI怎么找? 1480215
科研通“疑难数据库(出版商)”最低求助积分说明 684219
邀请新用户注册赠送积分活动 678543