已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep transfer learning for delamination damage in CFRP composite materials

分层(地质) 复合数 材料科学 复合材料 地质学 古生物学 俯冲 构造学
作者
Zhuo Xu,Hao Li,Jian Yu,Yu Jingwen
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241311942
摘要

This article presents the health monitoring of carbon fiber-reinforced plastic (CFRP) structures using a data-driven deep transfer learning approach to facilitate mapping signal features to damage categories. Simulations were conducted on composite material specimens with delamination damage, with validation performed using laboratory-derived CFRP damage experimental data. Continuous wavelet transform was employed to process Lamb wave signals recorded from a specified sensor network on the composite material panel, extracting time–frequency scale representations. A cross-workpiece deep transfer learning (CWTL) model was proposed to address the interdependence of the machine learning (ML) model on a large set of labeled damage data for different composite material structures. The CWTL, by seeking an appropriate initial range with minimal data, alters the direction of gradient descent, thereby identifying initial parameters more sensitive to the task. This process allows the ML model to fit to a limited damage dataset quickly. To assess the robustness of this method, considering environmental variability as well as damage localization and quantification, further extensions of the study were explored. The results demonstrate the efficacy of CWTL in accurately classifying both undamaged and delaminated damage categories, with high accuracy, suggesting the ML model’s potential for practical applications in such structural frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlzy316发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得20
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得20
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
panyang发布了新的文献求助10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得30
4秒前
研友_VZG7GZ应助科研通管家采纳,获得30
4秒前
初夏发布了新的文献求助10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
wanci应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
翔君发布了新的文献求助10
5秒前
6秒前
伊丽莎白完成签到,获得积分10
9秒前
科研通AI6.1应助cfv采纳,获得10
12秒前
伊丽莎白发布了新的文献求助10
12秒前
领导范儿应助zzzdx采纳,获得10
15秒前
可爱的函函应助ke888采纳,获得30
16秒前
18秒前
bkagyin应助panyang采纳,获得10
19秒前
加油完成签到,获得积分10
19秒前
WXZ完成签到 ,获得积分10
19秒前
123发布了新的文献求助10
20秒前
21秒前
22秒前
善学以致用应助初夏采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779070
求助须知:如何正确求助?哪些是违规求助? 5645586
关于积分的说明 15451137
捐赠科研通 4910574
什么是DOI,文献DOI怎么找? 2642735
邀请新用户注册赠送积分活动 1590426
关于科研通互助平台的介绍 1544793