Reaction Mechanisms and Improvement of α-MnO2 Cathode in Aqueous Zn-Ion Battery

阴极 水溶液 离子 材料科学 电池(电) 无机化学 电化学 化学工程 化学 电极 物理化学 有机化学 功率(物理) 物理 量子力学 工程类
作者
Taesoon Hwang,Matthew Bergschneider,Fantai Kong,Kyeongjae Cho
出处
期刊:Chemistry of Materials [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.chemmater.4c03176
摘要

Rechargeable aqueous Zn/α-MnO2 batteries have drawn enormous interest due to low cost, safety, and high energy density as a promising alternative to Li-ion batteries. In contrast, the reaction mechanism of charge storage still remains ambiguous owing to the complexity of side reactions in aqueous electrolytes. This report explored the fundamental reaction mechanism of Zn/α-MnO2 based on first-principles calculation. Zn4SO4(OH)6·xH2O (ZHS) is deposited from the irreversibly dissolved Mn as well as H+ intercalation at a similar voltage range from the first discharge. ZHS is then transformed to ZnMn3O7·3H2O (Zn inserted layered chalcophanite) with distorted α-MnO2 formation at a slightly low voltage range compared with the initial ZHS formation during the charge. Chalcophanite reversibly transformed to ZHS again at the second discharge. In addition, ZHS and chalcophanite are very inactive for ionic and electronic transports due to the high migration barrier of Zn2+ and H+ and large band gap. It is inferred that the reversible transformation from ZHS to chalcophanite and vice versa is the dominant reaction mechanism and can also degrade electrochemical properties by forming distorted α-MnO2 and limiting ion intercalation into the electrode. In addition, the reversible transformation occurs in a similar voltage range (ΔV = 230 mV) with Zn2+ and H+ intercalations. Considering that the surface of α-MnO2 mainly experiences severe side reactions, TiO2 coating, indicating thermodynamical stability in mildly acidic aqueous electrolyte and very low Zn migration barrier, would be a remedy for better performance by conducting Zn and protecting side reactions for aqueous Zn-ion battery cathode. This study provides fundamental insight for developing promising aqueous Zn-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
汉堡包应助K先生采纳,获得10
4秒前
4秒前
浮游应助你好采纳,获得10
4秒前
欢喜的之瑶完成签到,获得积分10
5秒前
张会发布了新的文献求助10
6秒前
所所应助传统的乐安采纳,获得10
6秒前
科研通AI2S应助tpl采纳,获得10
6秒前
6秒前
shangbowen发布了新的文献求助10
7秒前
毛万良完成签到,获得积分10
8秒前
NiL发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助100
8秒前
8秒前
daytoy完成签到,获得积分10
9秒前
9秒前
胡瓜拌凉皮完成签到,获得积分10
10秒前
李想完成签到,获得积分10
11秒前
12秒前
1111发布了新的文献求助30
12秒前
缥缈冷亦发布了新的文献求助100
12秒前
12秒前
你好发布了新的文献求助10
13秒前
领导范儿应助Cole采纳,获得10
13秒前
周老八发布了新的文献求助10
13秒前
勤劳山柏完成签到,获得积分20
14秒前
15秒前
Lucas应助daytoy采纳,获得10
15秒前
15秒前
15秒前
15秒前
沐言完成签到,获得积分10
16秒前
16秒前
Qing完成签到,获得积分10
17秒前
勤劳山柏发布了新的文献求助10
18秒前
灵寒完成签到 ,获得积分10
18秒前
19秒前
科研通AI6应助科研式采纳,获得10
19秒前
彭于晏应助木子采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310