Reaction Mechanisms and Improvement of α-MnO2 Cathode in Aqueous Zn-Ion Battery

阴极 水溶液 离子 材料科学 电池(电) 无机化学 电化学 化学工程 化学 电极 物理化学 有机化学 量子力学 物理 工程类 功率(物理)
作者
Taesoon Hwang,Matthew Bergschneider,Fantai Kong,Kyeongjae Cho
出处
期刊:Chemistry of Materials [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.chemmater.4c03176
摘要

Rechargeable aqueous Zn/α-MnO2 batteries have drawn enormous interest due to low cost, safety, and high energy density as a promising alternative to Li-ion batteries. In contrast, the reaction mechanism of charge storage still remains ambiguous owing to the complexity of side reactions in aqueous electrolytes. This report explored the fundamental reaction mechanism of Zn/α-MnO2 based on first-principles calculation. Zn4SO4(OH)6·xH2O (ZHS) is deposited from the irreversibly dissolved Mn as well as H+ intercalation at a similar voltage range from the first discharge. ZHS is then transformed to ZnMn3O7·3H2O (Zn inserted layered chalcophanite) with distorted α-MnO2 formation at a slightly low voltage range compared with the initial ZHS formation during the charge. Chalcophanite reversibly transformed to ZHS again at the second discharge. In addition, ZHS and chalcophanite are very inactive for ionic and electronic transports due to the high migration barrier of Zn2+ and H+ and large band gap. It is inferred that the reversible transformation from ZHS to chalcophanite and vice versa is the dominant reaction mechanism and can also degrade electrochemical properties by forming distorted α-MnO2 and limiting ion intercalation into the electrode. In addition, the reversible transformation occurs in a similar voltage range (ΔV = 230 mV) with Zn2+ and H+ intercalations. Considering that the surface of α-MnO2 mainly experiences severe side reactions, TiO2 coating, indicating thermodynamical stability in mildly acidic aqueous electrolyte and very low Zn migration barrier, would be a remedy for better performance by conducting Zn and protecting side reactions for aqueous Zn-ion battery cathode. This study provides fundamental insight for developing promising aqueous Zn-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁小乐发布了新的文献求助10
1秒前
hhh发布了新的文献求助10
2秒前
九霄发布了新的文献求助10
2秒前
3秒前
简小小发布了新的文献求助10
3秒前
李爱国应助背包包包采纳,获得10
4秒前
4秒前
斯文败类应助zkz采纳,获得10
4秒前
4秒前
4秒前
5秒前
6秒前
6秒前
6秒前
ucas大菠萝完成签到,获得积分10
6秒前
7秒前
Monest发布了新的文献求助30
7秒前
7秒前
7秒前
科研通AI6应助芒果味采纳,获得10
7秒前
7秒前
Luna完成签到 ,获得积分10
7秒前
刘刘刘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
佳敏完成签到,获得积分20
8秒前
搜集达人应助张再禹采纳,获得10
8秒前
Huansun完成签到,获得积分10
9秒前
wkkslx完成签到,获得积分10
10秒前
元谷雪发布了新的文献求助10
10秒前
cico给cico的求助进行了留言
10秒前
毕嵩山发布了新的文献求助10
11秒前
迅速不可发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
佳敏发布了新的文献求助10
11秒前
11秒前
12秒前
hebei应助黄志平采纳,获得10
12秒前
搬砖的发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398