Reaction Mechanisms and Improvement of α-MnO2 Cathode in Aqueous Zn-Ion Battery

阴极 水溶液 离子 材料科学 电池(电) 无机化学 电化学 化学工程 化学 电极 物理化学 有机化学 量子力学 物理 工程类 功率(物理)
作者
Taesoon Hwang,Matthew Bergschneider,Fantai Kong,Kyeongjae Cho
出处
期刊:Chemistry of Materials [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.chemmater.4c03176
摘要

Rechargeable aqueous Zn/α-MnO2 batteries have drawn enormous interest due to low cost, safety, and high energy density as a promising alternative to Li-ion batteries. In contrast, the reaction mechanism of charge storage still remains ambiguous owing to the complexity of side reactions in aqueous electrolytes. This report explored the fundamental reaction mechanism of Zn/α-MnO2 based on first-principles calculation. Zn4SO4(OH)6·xH2O (ZHS) is deposited from the irreversibly dissolved Mn as well as H+ intercalation at a similar voltage range from the first discharge. ZHS is then transformed to ZnMn3O7·3H2O (Zn inserted layered chalcophanite) with distorted α-MnO2 formation at a slightly low voltage range compared with the initial ZHS formation during the charge. Chalcophanite reversibly transformed to ZHS again at the second discharge. In addition, ZHS and chalcophanite are very inactive for ionic and electronic transports due to the high migration barrier of Zn2+ and H+ and large band gap. It is inferred that the reversible transformation from ZHS to chalcophanite and vice versa is the dominant reaction mechanism and can also degrade electrochemical properties by forming distorted α-MnO2 and limiting ion intercalation into the electrode. In addition, the reversible transformation occurs in a similar voltage range (ΔV = 230 mV) with Zn2+ and H+ intercalations. Considering that the surface of α-MnO2 mainly experiences severe side reactions, TiO2 coating, indicating thermodynamical stability in mildly acidic aqueous electrolyte and very low Zn migration barrier, would be a remedy for better performance by conducting Zn and protecting side reactions for aqueous Zn-ion battery cathode. This study provides fundamental insight for developing promising aqueous Zn-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
哈哈完成签到,获得积分10
3秒前
4秒前
章文荣完成签到,获得积分10
4秒前
fff发布了新的文献求助10
5秒前
rfr完成签到,获得积分10
5秒前
5秒前
蝶步韶华发布了新的文献求助10
6秒前
czx发布了新的文献求助10
6秒前
7秒前
7秒前
希望天下0贩的0应助123456采纳,获得10
8秒前
YY发布了新的文献求助10
9秒前
rfr发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
cui18发布了新的文献求助10
12秒前
Mianiu应助不做花瓶好多年采纳,获得10
13秒前
直率凝丝发布了新的文献求助30
13秒前
斯文败类应助务实土豆采纳,获得10
13秒前
14秒前
时光留痕完成签到,获得积分10
14秒前
钟琪发布了新的文献求助10
15秒前
爽歪歪发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
田様应助蝶步韶华采纳,获得10
17秒前
烟花应助时光留痕采纳,获得10
17秒前
sunqian完成签到,获得积分10
19秒前
搜集达人应助doctorw采纳,获得10
20秒前
123456完成签到,获得积分10
20秒前
21秒前
高斯完成签到,获得积分20
21秒前
罗婕发布了新的文献求助10
21秒前
ShawnJohn应助zzw18512467916采纳,获得10
21秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694252
求助须知:如何正确求助?哪些是违规求助? 5096658
关于积分的说明 15213516
捐赠科研通 4850904
什么是DOI,文献DOI怎么找? 2602050
邀请新用户注册赠送积分活动 1553901
关于科研通互助平台的介绍 1511836