锂(药物)
电极
材料科学
电池(电)
金属
金属锂
薄膜
化学工程
纳米技术
化学
阳极
冶金
物理化学
医学
工程类
内分泌学
功率(物理)
物理
量子力学
作者
Weijie Ji,Bi Luo,Qi Wang,Guihui Yu,Zixun Zhang,Yi Tian,Zaowen Zhao,Ruirui Zhao,Shubin Wang,Xiaowei Wang,Bao Zhang,Jiafeng Zhang,Zhiyuan Sang,Ji Liang
标识
DOI:10.1038/s41467-024-54234-w
摘要
Abstract Controllable engineering of thin lithium (Li) metal is essential for increasing the energy density of solid-state batteries and clarifying the interfacial evolution mechanisms of a lithium metal negative electrode. However, fabricating a thin lithium electrode faces significant challenges due to the fragility and high viscosity of Li metal. Herein, through facile treatment of Ta-doped Li 7 La 3 Zr 2 O 12 (LLZTO) with trifluoromethanesulfonic acid, its surface Li 2 CO 3 species is converted into a lithiophilic layer with LiCF 3 SO 3 and LiF components. It enables the thickness control of Li metal negative electrodes, ranging from 0.78 μm to 30 μm. Quasi-solid-state lithium-metal battery with an optimized 7.54 μm-thick lithium metal negative electrode, a commercial LiNi 0.83 Co 0.11 Mn 0.06 O 2 positive electrode, and a negative/positive electrode capacity ratio of 1.1 shows a 500 cycles lifespan with a final discharge specific capacity of 99 mAh g −1 at 2.35 mA cm −2 and 25 °C. Through multi-scale characterizations of the thin lithium negative electrode, we clarify the multi-dimensional compositional evolution and failure mechanisms of lithium-deficient and -rich regions (0.78 μm and 7.54 μm), on its surface, inside it, or at the Li/LLZTO interface.
科研通智能强力驱动
Strongly Powered by AbleSci AI