材料科学
电介质
光电子学
范德瓦尔斯力
高-κ电介质
栅极电介质
带隙
Crystal(编程语言)
紫外线
晶体管
电压
电气工程
分子
化学
计算机科学
程序设计语言
有机化学
工程类
作者
Yixiang Li,Chuanyong Jian,Jiashuai Yuan,Wenting Hong,Yu Yao,Zhipeng Fu,Bi‐Cheng Wang,Qian Cai,Wei Liu
标识
DOI:10.1002/adma.202409773
摘要
Abstract The development of dielectrics with atomic planes and van der Waals (vdW) interfaces is essential for enhancing the performance of 2D devices. However, vdW dielectrics often have smaller bandgaps compared to traditional 3D dielectrics, limiting their options. This study introduces AZBX (AZn₂BO₃X₂, where A = K or Rb, X = Cl or Br), a nonlinear deep‐ultraviolet optical crystal, as a quasi‐vdW layered dielectric ideal for 2D electronic devices. Focusing on KZBB, it's excellent dielectric properties, including a wide bandgap, high dielectric constant (high‐κ), and smooth interfaces are demonstrated. When used as the top gate dielectric in a KZBB/MoS₂ field‐effect transistor (FET) with MoS₂ channels and graphene contacts, the device exhibits outstanding performance, with a steep subthreshold swing (≈ 73 mV dec −1 ), high on/off ratio (≈ 10⁷), negligible hysteresis (0–8 mV), and stable, low leakage current (≈10⁻⁷ A cm − 2 ) before breakdown. This work expands the 2D material and dielectric landscape and highlights the strong potential of AZBX as high‐performance dielectrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI