Improving the explainability of CNN-LSTM-based flood prediction with integrating SHAP technique

计算机科学 大洪水 人工智能 机器学习 地理 考古
作者
Hao Huang,Zhaoli Wang,Yaoxing Liao,Weizhi Gao,Chengguang Lai,Xushu Wu,Zhaoyang Zeng
出处
期刊:Ecological Informatics [Elsevier]
卷期号:84: 102904-102904 被引量:38
标识
DOI:10.1016/j.ecoinf.2024.102904
摘要

Convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) are popular deep learning architectures currently used for rapid flood simulations. However, deep learning algorithms are difficult to explain, like a “black box” that lacks insight. In order to reveal the intrinsic mechanism of prediction by such architectures, we adopted a coupled CNN-LSTM model based on the explainability technique SHapley Additive exPlanations (SHAP) to predict the rainfall-runoff process and identify key input feature factors, and took the Beijiang River Basin in China as an example, so as to improve the explainability and credibility of this black-box model. The results show that the coupled CNN-LSTM model performs better than the flood predictions compared to the individual CNN or LSTM models under the longest foresight period of 25 h. In particular, the Nash-Sutcliffe Efficiency (NSE) of the former model reaches 0.838, while those of the latter two models are 0.737 and 0.745, respectively. The coupled CNN-LSTM model has a high-accuracy prediction capability, consistently exhibiting NSEs greater than 0.8 for different input time steps and foresight periods. The prediction accuracy is mainly influenced by the observed runoff at the downstream hydrological station from previous time points, while the effects of the input time step length and the foresight period are comparatively negligible. This study provides a new perspective for understanding the potential physical mechanism of black-box models for rainfall-runoff prediction and emphasizes the importance and prospect of the application of explainability techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助light采纳,获得10
1秒前
3秒前
xy完成签到,获得积分10
6秒前
11秒前
lizishu应助小胖采纳,获得10
13秒前
三尺巷应助lt采纳,获得10
14秒前
19秒前
Owen应助LavenDell199119采纳,获得10
19秒前
田様应助等待的谷波采纳,获得10
21秒前
qim发布了新的文献求助10
22秒前
Jasper应助可爱花生采纳,获得10
22秒前
zx完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
魔幻冷风发布了新的文献求助10
27秒前
lizishu应助小胖采纳,获得10
27秒前
科研通AI6.2应助Kkxx采纳,获得10
27秒前
lululucy发布了新的文献求助50
28秒前
YOOO发布了新的文献求助10
29秒前
打打应助MMM采纳,获得10
29秒前
英姑应助丸子采纳,获得10
29秒前
从云发布了新的文献求助10
29秒前
31秒前
看文献了完成签到,获得积分10
32秒前
35秒前
35秒前
落落洛栖完成签到 ,获得积分10
35秒前
37秒前
37秒前
JayChou发布了新的文献求助10
38秒前
bkagyin应助llly采纳,获得30
40秒前
小二郎应助MMM采纳,获得10
41秒前
41秒前
可爱花生发布了新的文献求助10
43秒前
lizishu应助小胖采纳,获得10
45秒前
大树完成签到 ,获得积分10
48秒前
50秒前
从云完成签到,获得积分20
50秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578