Variability and uncertainty of variance components in fixed-effects and mixed-effects ground-motion models

地震动 混合模型 差异(会计) 方差分量 固定效应模型 计量经济学 数学 统计 地质学 地震学 面板数据 经济 会计
作者
Kenneth W. Campbell,Nicolas Kuehn,Yousef Bozorgnia
出处
期刊:Earthquake Spectra [SAGE]
标识
DOI:10.1177/87552930241283717
摘要

It has become common in the development of ground-motion models (GMMs), especially using mixed-effects regression with crossed random effects, to calculate standard deviations, referred to as variance components, from sample statistics of the residuals (i.e. random effects and within-group errors) rather than using the variance components reported by a mixed-effects regression program, calculated using the same algorithms used in the mixed-effects regression, or estimated using Bayesian inference. This practice leads to underestimating the standard deviations because it does not account for the uncertainty (i.e. standard errors) associated with fitting the random effects and within-group errors during the regression analysis. In this study, we used a series of ground-motion models for Fourier amplitude spectra developed using mixed-effects regression of an Next Generation Attenuation (NGA)-West2 database to show that residual-based standard deviations can be significantly smaller than regression-based standard deviations. These differences are exacerbated for those variance components with the fewest number of observations or when the residuals are partitioned (e.g. by earthquake magnitude). Using residual-based variance components not only results in smaller standard deviations but can lead to biased inferences when attempting to compare the efficacy of a model based solely on a comparison of the values of the variance components or their related mean square errors. It can also lead to biased fixed-effects coefficients if the variance components are derived from the residuals of a mixed-effects regression rather than estimated during a regression. We show that variance components can be decomposed into various random-effect grouping factors and partitioned into subsets of predictor variables, such as magnitude, from the total residuals of a non-Bayesian mixed-effects regression program using Bayesian inference. This process does not require the development of an entire GMM using Bayesian mixed-effects regression.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
华仔应助jk采纳,获得10
3秒前
him12发布了新的文献求助10
4秒前
杳鸢应助zhangh65采纳,获得10
4秒前
ssy发布了新的文献求助10
5秒前
慕青应助Ray采纳,获得10
7秒前
猕猴桃砂糖完成签到 ,获得积分10
8秒前
8秒前
巴巴爸爸和他的孩子们完成签到,获得积分10
8秒前
siccy完成签到 ,获得积分10
10秒前
12秒前
14秒前
haoooooooooooooo完成签到,获得积分10
14秒前
14秒前
15秒前
ssy完成签到,获得积分10
16秒前
东病房楼发布了新的文献求助10
17秒前
舒服的鱼发布了新的文献求助10
17秒前
定格发布了新的文献求助10
19秒前
小恶发布了新的文献求助10
19秒前
研友_5Z4ZA5完成签到,获得积分10
20秒前
安详凡发布了新的文献求助10
20秒前
believer一完成签到,获得积分10
20秒前
踏实嚣完成签到 ,获得积分10
23秒前
Jasper应助岑从寒采纳,获得10
24秒前
24秒前
李健的小迷弟应助Dr.驴采纳,获得10
24秒前
wdufhgk完成签到,获得积分10
26秒前
调皮芷卉发布了新的文献求助10
28秒前
顺利毕业应助高金龙采纳,获得10
28秒前
gogoo完成签到,获得积分20
28秒前
wdufhgk发布了新的文献求助10
29秒前
黄景瑜发布了新的文献求助10
31秒前
期待完成签到,获得积分10
33秒前
35秒前
言成发布了新的文献求助10
38秒前
bkagyin应助安详凡采纳,获得10
38秒前
调皮芷卉完成签到,获得积分10
38秒前
棱镜完成签到,获得积分20
39秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387810
求助须知:如何正确求助?哪些是违规求助? 3000370
关于积分的说明 8791128
捐赠科研通 2686408
什么是DOI,文献DOI怎么找? 1471612
科研通“疑难数据库(出版商)”最低求助积分说明 680410
邀请新用户注册赠送积分活动 673174