Recent insights into the transformative role of Graphene‐based/TiO2 electron transport layers for perovskite solar cells

钙钛矿(结构) 材料科学 石墨烯 电子传输链 纳米技术 转化式学习 电子 工程物理 化学工程 工程类 心理学 物理 化学 教育学 生物化学 量子力学
作者
T. Sewela,R.O. Ocaya,T.D. Malevu
出处
期刊:Energy Science & Engineering [Wiley]
标识
DOI:10.1002/ese3.1878
摘要

Abstract Perovskite solar cells (PSCs) hold great promise for cost‐effective and high‐efficiency solar energy conversion. However, in practice, they face practical limitations due to suboptimal electron transport, inadequate hole‐suppression, photocatalytic instability, and susceptibility to other environmental factors. Many transition metal oxides such as ZnO and TiO 2 have important excitonic properties that make them good electron transport layer (ETL) materials in PSCs. However, many of the PS limitations arise from inherent issues with these oxides. The high interest in TiO 2 is due to its low toxicity, chemical stability, and the potential to enhance its excitonic performance through doping with many materials. The main limitations of TiO 2 are its poor visible‐light response by virtue of its wide bandgap of ~3.2 eV, and its high electron‐hole (e‐h) recombination rates, which are directly responsible for its low current densities. Transition metal oxide enhancements occur using either internal doping or surface sensitization. Of the added materials, graphene has exceptional electrical conductivity, high electron mobility, large surface area, and excellent mechanical properties, making it a near‐ideal candidate to improve the performance of TiO 2 . This review examines the important advances in graphene‐TiO 2 (g‐TiO 2 ) composites for ETL application. By forming a composite with TiO 2 , graphene can significantly enhance electron transport, reduce recombination losses, and improve the overall stability of PSCs. We present the detailed rationale for and analysis of g‐TiO 2 for improved electron transport efficiency, enhanced stability, and boosted overall PSC performance with the objective of providing an authoritative resource for the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Tracy采纳,获得10
刚刚
1秒前
可爱的函函应助史春雨采纳,获得10
3秒前
3秒前
4秒前
binyh发布了新的文献求助10
5秒前
ding应助baobeikk采纳,获得10
10秒前
11秒前
Holly完成签到,获得积分10
11秒前
15秒前
赘婿应助zhangwei采纳,获得10
15秒前
18秒前
baobeikk发布了新的文献求助10
18秒前
今后应助祗想静静嘚采纳,获得10
19秒前
打打应助酷酷的乌冬面采纳,获得10
21秒前
史春雨发布了新的文献求助10
22秒前
Felice完成签到,获得积分10
24秒前
28秒前
31秒前
heyley1113发布了新的文献求助10
32秒前
雪酪芋泥球完成签到 ,获得积分10
33秒前
35秒前
36秒前
zhangwei发布了新的文献求助10
38秒前
干不动了完成签到,获得积分10
38秒前
39秒前
41秒前
42秒前
42秒前
44秒前
zhangwei完成签到,获得积分10
44秒前
cc发布了新的文献求助10
45秒前
许玄发布了新的文献求助10
46秒前
酷酷的乌冬面完成签到,获得积分10
46秒前
48秒前
54秒前
Tracy发布了新的文献求助10
55秒前
kento应助yifei采纳,获得100
56秒前
59秒前
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340523
求助须知:如何正确求助?哪些是违规求助? 2968522
关于积分的说明 8633997
捐赠科研通 2648031
什么是DOI,文献DOI怎么找? 1449967
科研通“疑难数据库(出版商)”最低求助积分说明 671609
邀请新用户注册赠送积分活动 660663